Biomimetic Macrophage Membrane and Lipidated Peptide Hybrid Nanovesicles for Atherosclerosis Therapy

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2022-10-28 DOI:10.1002/adfm.202204822
Linmiao Guo, Yunqiu Miao, Ying Wang, Ying Zhang, Erfen Zhou, Jiangyue Wang, Yanqi Zhao, Lijun Li, Aohua Wang, Yong Gan, Xinxin Zhang
{"title":"Biomimetic Macrophage Membrane and Lipidated Peptide Hybrid Nanovesicles for Atherosclerosis Therapy","authors":"Linmiao Guo,&nbsp;Yunqiu Miao,&nbsp;Ying Wang,&nbsp;Ying Zhang,&nbsp;Erfen Zhou,&nbsp;Jiangyue Wang,&nbsp;Yanqi Zhao,&nbsp;Lijun Li,&nbsp;Aohua Wang,&nbsp;Yong Gan,&nbsp;Xinxin Zhang","doi":"10.1002/adfm.202204822","DOIUrl":null,"url":null,"abstract":"<p>Atherosclerosis is the underlying cause for cardiovascular disease. Current pharmacotherapies are limited by the inadequate targeting and insufficient treatment. Herein, inspired by the interaction of macrophage and lipoprotein as a typical hallmark of atherosclerosis, hybrid nanovesicles (MLP-NVs) are designed by fusion of anti-inflammatory M2-phenotype macrophage membranes and lipidated peptide (DOPE-pp-HBSP) to mimic the binding manner of cell-lipoprotein for atherosclerotic treatment. Through hybridization of M2 macrophage membranes and lipidated peptide film, MLP-NVs facilitate the inflammatory cell internalization at atherosclerotic site, and sequester the proinflammatory cytokines to suppress local inflammation. Moreover, MLP-NVs exhibit a matrix metalloprotease 2 (MMP2)-responsive release of the peptide HBSP in plaques, leading to the restoration of dysfunctional endothelial cells. In the ApoE<sup>−/−</sup> mice with atherosclerosis, simvastatin-loaded MLP-NVs provide comprehensive treatment by inherent inflammation suppression, endothelial repair, and cholesterol efflux capacities, resulting in atherosclerotic plaques regression. Through closely mimicking physiological cues, this biomimetic hybrid nanovesicle platform provides a potential strategy for anti-atherosclerotic therapy.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202204822","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

Abstract

Atherosclerosis is the underlying cause for cardiovascular disease. Current pharmacotherapies are limited by the inadequate targeting and insufficient treatment. Herein, inspired by the interaction of macrophage and lipoprotein as a typical hallmark of atherosclerosis, hybrid nanovesicles (MLP-NVs) are designed by fusion of anti-inflammatory M2-phenotype macrophage membranes and lipidated peptide (DOPE-pp-HBSP) to mimic the binding manner of cell-lipoprotein for atherosclerotic treatment. Through hybridization of M2 macrophage membranes and lipidated peptide film, MLP-NVs facilitate the inflammatory cell internalization at atherosclerotic site, and sequester the proinflammatory cytokines to suppress local inflammation. Moreover, MLP-NVs exhibit a matrix metalloprotease 2 (MMP2)-responsive release of the peptide HBSP in plaques, leading to the restoration of dysfunctional endothelial cells. In the ApoE−/− mice with atherosclerosis, simvastatin-loaded MLP-NVs provide comprehensive treatment by inherent inflammation suppression, endothelial repair, and cholesterol efflux capacities, resulting in atherosclerotic plaques regression. Through closely mimicking physiological cues, this biomimetic hybrid nanovesicle platform provides a potential strategy for anti-atherosclerotic therapy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于动脉粥样硬化治疗的仿生巨噬细胞膜和脂化肽杂交纳米囊泡
动脉粥样硬化是心血管疾病的根本原因。目前的药物治疗受到靶向性不足和治疗不充分的限制。本文受巨噬细胞与脂蛋白相互作用作为动脉粥样硬化的典型标志的启发,通过融合抗炎m2表型巨噬细胞膜和脂化肽(DOPE-pp-HBSP)设计杂交纳米囊泡(MLP-NVs),模拟细胞脂蛋白的结合方式,用于动脉粥样硬化治疗。MLP-NVs通过M2巨噬细胞膜与脂化肽膜的杂交,促进动脉粥样硬化部位的炎症细胞内化,并隔离促炎细胞因子,抑制局部炎症。此外,MLP-NVs表现出基质金属蛋白酶2 (MMP2)响应肽HBSP在斑块中的释放,导致功能失调的内皮细胞的恢复。在患有动脉粥样硬化的ApoE−/−小鼠中,辛伐他汀负载的MLP-NVs通过固有的炎症抑制、内皮修复和胆固醇外泄能力提供综合治疗,导致动脉粥样硬化斑块消退。通过密切模仿生理线索,这种仿生杂交纳米泡平台为抗动脉粥样硬化治疗提供了一种潜在的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Br-Induced d-Band Regulation on Superhydrophilic Isostructural Cobalt Phosphide for Efficient Overall Water Splitting Efficient Approach to Rank Performance of Magnetic Colloids for Magnetic Particle Imaging and Magnetic Particle Hyperthermia Aptamer-Directed Bidirectional Modulation of Vascular Niches for Promoted Regeneration of Segmental Trachea Defect MBene Nanosheets with DNA Adsorbability for Circulating Tumor DNA Assay via Fluorescence Biosensing and Paper-Based Microfluidic POCT Innovative Materials for Lamination Encapsulation in Perovskite Solar Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1