{"title":"Effects of pentachlorophenol on the bacterial denitrification process","authors":"Bairen Yang, Aihui Chen","doi":"10.1080/09542299.2016.1212675","DOIUrl":null,"url":null,"abstract":"Abstract The use of pentachlorophenol (PCP) was banned or restricted in many countries worldwide because of its adverse influences on the ecological environment and humans. However, the potential disrupting effects of PCP on denitrifying microorganisms have warranted more analysis. In this study, the impacts of PCP on denitrification were investigated by using Paracoccus denitrificans as a model denitrifying bacterium. Compared with the control, the presences of 10 and 50 μM of PCP were found to significantly decrease the denitrification efficiencies from 98.5 to 87.2% and 68.7%, respectively. The mechanism studies showed that PCP induced the generation of reactive oxygen species, which decreased the vital enzymes activities related to glycolysis process, causing the disturbance of the metabolism of P. denitrificans utilizing carbon source (glucose) and the growth of the cell, and subsequently the generation of electron donor (NADH) for denitrification via NAD+ reduction was severely depressed. Further studies indicated that PCP also decreased the genes expression of several key enzymes responsible for denitrification, such as napA of nitrate reductase (NAR), nirS of nitrite reductase, norB of nitric oxide reductase, and nosZ of nitrous oxide reductase; however, there was only the enzyme activity of NAR was remarkably inhibited.","PeriodicalId":55264,"journal":{"name":"Chemical Speciation and Bioavailability","volume":"28 1","pages":"163 - 169"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09542299.2016.1212675","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Speciation and Bioavailability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09542299.2016.1212675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 9
Abstract
Abstract The use of pentachlorophenol (PCP) was banned or restricted in many countries worldwide because of its adverse influences on the ecological environment and humans. However, the potential disrupting effects of PCP on denitrifying microorganisms have warranted more analysis. In this study, the impacts of PCP on denitrification were investigated by using Paracoccus denitrificans as a model denitrifying bacterium. Compared with the control, the presences of 10 and 50 μM of PCP were found to significantly decrease the denitrification efficiencies from 98.5 to 87.2% and 68.7%, respectively. The mechanism studies showed that PCP induced the generation of reactive oxygen species, which decreased the vital enzymes activities related to glycolysis process, causing the disturbance of the metabolism of P. denitrificans utilizing carbon source (glucose) and the growth of the cell, and subsequently the generation of electron donor (NADH) for denitrification via NAD+ reduction was severely depressed. Further studies indicated that PCP also decreased the genes expression of several key enzymes responsible for denitrification, such as napA of nitrate reductase (NAR), nirS of nitrite reductase, norB of nitric oxide reductase, and nosZ of nitrous oxide reductase; however, there was only the enzyme activity of NAR was remarkably inhibited.
期刊介绍:
Chemical Speciation & Bioavailability ( CS&B) is a scholarly, peer-reviewed forum for insights on the chemical aspects of occurrence, distribution, transport, transformation, transfer, fate, and effects of substances in the environment and biota, and their impacts on the uptake of the substances by living organisms. Substances of interests include both beneficial and toxic ones, especially nutrients, heavy metals, persistent organic pollutants, and emerging contaminants, such as engineered nanomaterials, as well as pharmaceuticals and personal-care products as pollutants. It is the aim of this Journal to develop an international community of experienced colleagues to promote the research, discussion, review, and spread of information on chemical speciation and bioavailability, which is a topic of interest to researchers in many disciplines, including environmental, chemical, biological, food, medical, toxicology, and health sciences.
Key themes in the scope of the Journal include, but are not limited to, the following “6Ms”:
Methods for speciation analysis and the evaluation of bioavailability, especially the development, validation, and application of novel methods and techniques.
Media that sustain the processes of release, distribution, transformation, and transfer of chemical speciation; of particular interest are emerging contaminants, such as engineered nanomaterials, pharmaceuticals, and personal-care products.
Mobility of substance species in environment and biota, either spatially or temporally.
Matters that influence the chemical speciation and bioavailability, mainly environmentally relevant conditions.
Mechanisms that govern the transport, transformation, transfer, and fate of chemical speciation in the environment, and the biouptake of substances.
Models for the simulation of chemical speciation and bioavailability, and for the prediction of toxicity.
Chemical Speciation & Bioavailability is a fully open access journal. This means all submitted articles will, if accepted, be available for anyone to read, anywhere, at any time. immediately on publication. There are no charges for submission to this journal.