Dann M. Mitchell, Richard K. Scott, William J. M. Seviour, Stephen I. Thomson, Darryn W. Waugh, Nicholas A. Teanby, Emily R. Ball
{"title":"Polar Vortices in Planetary Atmospheres","authors":"Dann M. Mitchell, Richard K. Scott, William J. M. Seviour, Stephen I. Thomson, Darryn W. Waugh, Nicholas A. Teanby, Emily R. Ball","doi":"10.1029/2020RG000723","DOIUrl":null,"url":null,"abstract":"<p>Among the great diversity of atmospheric circulation patterns observed throughout the solar system, polar vortices stand out as a nearly ubiquitous planetary-scale phenomenon. In recent years, there have been significant advances in the observation of planetary polar vortices, culminating in the fascinating discovery of Jupiter's polar vortex clusters during the Juno mission. Alongside these observational advances has been a major effort to understand polar vortex dynamics using theory, idealized and comprehensive numerical models, and laboratory experiments. Here, we review our current knowledge of planetary polar vortices, highlighting both the diversity of their structures, as well as fundamental dynamical similarities. We propose a new convention of vortex classification, which adequately captures all those observed in our solar system, and demonstrates the key role of polar vortices in the global circulation, transport, and climate of all planets. We discuss where knowledge gaps remain, and the observational, experimental, and theoretical advances needed to address them. In particular, as the diversity of both solar system and exoplanetary data increases exponentially, there is now a unique opportunity to unify our understanding of polar vortices under a single dynamical framework.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"59 4","pages":""},"PeriodicalIF":25.2000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2020RG000723","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Geophysics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2020RG000723","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 4
Abstract
Among the great diversity of atmospheric circulation patterns observed throughout the solar system, polar vortices stand out as a nearly ubiquitous planetary-scale phenomenon. In recent years, there have been significant advances in the observation of planetary polar vortices, culminating in the fascinating discovery of Jupiter's polar vortex clusters during the Juno mission. Alongside these observational advances has been a major effort to understand polar vortex dynamics using theory, idealized and comprehensive numerical models, and laboratory experiments. Here, we review our current knowledge of planetary polar vortices, highlighting both the diversity of their structures, as well as fundamental dynamical similarities. We propose a new convention of vortex classification, which adequately captures all those observed in our solar system, and demonstrates the key role of polar vortices in the global circulation, transport, and climate of all planets. We discuss where knowledge gaps remain, and the observational, experimental, and theoretical advances needed to address them. In particular, as the diversity of both solar system and exoplanetary data increases exponentially, there is now a unique opportunity to unify our understanding of polar vortices under a single dynamical framework.
期刊介绍:
Geophysics Reviews (ROG) offers comprehensive overviews and syntheses of current research across various domains of the Earth and space sciences. Our goal is to present accessible and engaging reviews that cater to the diverse AGU community. While authorship is typically by invitation, we warmly encourage readers and potential authors to share their suggestions with our editors.