An Improved Image Compression Algorithm Using 2D DWT and PCA with Canonical Huffman Encoding.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Entropy Pub Date : 2023-09-25 DOI:10.3390/e25101382
Rajiv Ranjan, Prabhat Kumar
{"title":"An Improved Image Compression Algorithm Using 2D DWT and PCA with Canonical Huffman Encoding.","authors":"Rajiv Ranjan,&nbsp;Prabhat Kumar","doi":"10.3390/e25101382","DOIUrl":null,"url":null,"abstract":"<p><p>Of late, image compression has become crucial due to the rising need for faster encoding and decoding. To achieve this objective, the present study proposes the use of canonical Huffman coding (CHC) as an entropy coder, which entails a lower decoding time compared to binary Huffman codes. For image compression, discrete wavelet transform (DWT) and CHC with principal component analysis (PCA) were combined. The lossy method was introduced by using PCA, followed by DWT and CHC to enhance compression efficiency. By using DWT and CHC instead of PCA alone, the reconstructed images have a better peak signal-to-noise ratio (PSNR). In this study, we also developed a hybrid compression model combining the advantages of DWT, CHC and PCA. With the increasing use of image data, better image compression techniques are necessary for the efficient use of storage space. The proposed technique achieved up to 60% compression while maintaining high visual quality. This method also outperformed the currently available techniques in terms of both PSNR (in dB) and bit-per-pixel (bpp) scores. This approach was tested on various color images, including Peppers 512 × 512 × 3 and Couple 256 × 256 × 3, showing improvements by 17 dB and 22 dB, respectively, while reducing the bpp by 0.56 and 0.10, respectively. For grayscale images as well, i.e., Lena 512 × 512 and Boat 256 × 256, the proposed method showed improvements by 5 dB and 8 dB, respectively, with a decrease of 0.02 bpp in both cases.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"25 10","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606267/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e25101382","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Of late, image compression has become crucial due to the rising need for faster encoding and decoding. To achieve this objective, the present study proposes the use of canonical Huffman coding (CHC) as an entropy coder, which entails a lower decoding time compared to binary Huffman codes. For image compression, discrete wavelet transform (DWT) and CHC with principal component analysis (PCA) were combined. The lossy method was introduced by using PCA, followed by DWT and CHC to enhance compression efficiency. By using DWT and CHC instead of PCA alone, the reconstructed images have a better peak signal-to-noise ratio (PSNR). In this study, we also developed a hybrid compression model combining the advantages of DWT, CHC and PCA. With the increasing use of image data, better image compression techniques are necessary for the efficient use of storage space. The proposed technique achieved up to 60% compression while maintaining high visual quality. This method also outperformed the currently available techniques in terms of both PSNR (in dB) and bit-per-pixel (bpp) scores. This approach was tested on various color images, including Peppers 512 × 512 × 3 and Couple 256 × 256 × 3, showing improvements by 17 dB and 22 dB, respectively, while reducing the bpp by 0.56 and 0.10, respectively. For grayscale images as well, i.e., Lena 512 × 512 and Boat 256 × 256, the proposed method showed improvements by 5 dB and 8 dB, respectively, with a decrease of 0.02 bpp in both cases.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种改进的基于二维离散小波变换和PCA的图像压缩算法。
最近,由于对更快的编码和解码的需求不断增加,图像压缩变得至关重要。为了实现这一目标,本研究提出使用规范霍夫曼编码(CHC)作为熵编码器,与二进制霍夫曼编码相比,这需要更低的解码时间。在图像压缩方面,将离散小波变换(DWT)和CHC与主成分分析(PCA)相结合。为了提高压缩效率,引入了PCA、DWT和CHC等有损方法。通过使用DWT和CHC代替单独的PCA,重建的图像具有更好的峰值信噪比(PSNR)。在本研究中,我们还结合DWT、CHC和PCA的优点开发了一个混合压缩模型。随着图像数据的使用越来越多,为了有效利用存储空间,需要更好的图像压缩技术。所提出的技术在保持高视觉质量的同时实现了高达60%的压缩。该方法在PSNR(以dB为单位)和每像素比特数(bpp)得分方面也优于当前可用的技术。该方法在各种彩色图像上进行了测试,包括Peppers 512×512×3和Couple 256×256×3,分别提高了17dB和22dB,同时将bpp分别降低了0.56和0.10。对于灰度图像,即Lena 512×512和Boat 256×256,所提出的方法分别提高了5 dB和8 dB,在这两种情况下都降低了0.02 bpp。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
期刊最新文献
Assessment of Nuclear Fusion Reaction Spontaneity via Engineering Thermodynamics. A Multilayer Nonlinear Permutation Framework and Its Demonstration in Lightweight Image Encryption. A Synergistic Perspective on Multivariate Computation and Causality in Complex Systems. Adaptive Privacy-Preserving Coded Computing with Hierarchical Task Partitioning. Advanced Exergy-Based Optimization of a Polygeneration System with CO2 as Working Fluid.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1