Enhancing Visual Feedback Control through Early Fusion Deep Learning.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Entropy Pub Date : 2023-09-25 DOI:10.3390/e25101378
Adrian-Paul Botezatu, Lavinia-Eugenia Ferariu, Adrian Burlacu
{"title":"Enhancing Visual Feedback Control through Early Fusion Deep Learning.","authors":"Adrian-Paul Botezatu,&nbsp;Lavinia-Eugenia Ferariu,&nbsp;Adrian Burlacu","doi":"10.3390/e25101378","DOIUrl":null,"url":null,"abstract":"<p><p>A visual servoing system is a type of control system used in robotics that employs visual feedback to guide the movement of a robot or a camera to achieve a desired task. This problem is addressed using deep models that receive a visual representation of the current and desired scene, to compute the control input. The focus is on early fusion, which consists of using additional information integrated into the neural input array. In this context, we discuss how ready-to-use information can be directly obtained from the current and desired scenes, to facilitate the learning process. Inspired by some of the most effective traditional visual servoing techniques, we introduce early fusion based on image moments and provide an extensive analysis of approaches based on image moments, region-based segmentation, and feature points. These techniques are applied stand-alone or in combination, to allow obtaining maps with different levels of detail. The role of the extra maps is experimentally investigated for scenes with different layouts. The results show that early fusion facilitates a more accurate approximation of the linear and angular camera velocities, in order to control the movement of a 6-degree-of-freedom robot from a current configuration to a desired one. The best results were obtained for the extra maps providing details of low and medium levels.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"25 10","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10606400/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e25101378","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A visual servoing system is a type of control system used in robotics that employs visual feedback to guide the movement of a robot or a camera to achieve a desired task. This problem is addressed using deep models that receive a visual representation of the current and desired scene, to compute the control input. The focus is on early fusion, which consists of using additional information integrated into the neural input array. In this context, we discuss how ready-to-use information can be directly obtained from the current and desired scenes, to facilitate the learning process. Inspired by some of the most effective traditional visual servoing techniques, we introduce early fusion based on image moments and provide an extensive analysis of approaches based on image moments, region-based segmentation, and feature points. These techniques are applied stand-alone or in combination, to allow obtaining maps with different levels of detail. The role of the extra maps is experimentally investigated for scenes with different layouts. The results show that early fusion facilitates a more accurate approximation of the linear and angular camera velocities, in order to control the movement of a 6-degree-of-freedom robot from a current configuration to a desired one. The best results were obtained for the extra maps providing details of low and medium levels.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过早期融合深度学习增强视觉反馈控制。
视觉伺服系统是机器人中使用的一种控制系统,其采用视觉反馈来引导机器人或相机的运动以实现期望的任务。使用接收当前和期望场景的视觉表示的深度模型来计算控制输入,来解决这个问题。重点是早期融合,它包括使用集成到神经输入阵列中的附加信息。在此背景下,我们将讨论如何直接从当前和所需场景中获得现成的信息,以促进学习过程。受一些最有效的传统视觉伺服技术的启发,我们引入了基于图像矩的早期融合,并对基于图像矩、基于区域的分割和特征点的方法进行了广泛的分析。这些技术可以单独或组合应用,以获得具有不同细节级别的地图。针对不同布局的场景,对额外贴图的作用进行了实验研究。结果表明,早期融合有助于更准确地近似摄像机的线性和角速度,以便控制6自由度机器人从当前配置到所需配置的运动。额外的地图提供了中低级别的细节,获得了最好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
期刊最新文献
Assessment of Nuclear Fusion Reaction Spontaneity via Engineering Thermodynamics. A Multilayer Nonlinear Permutation Framework and Its Demonstration in Lightweight Image Encryption. A Synergistic Perspective on Multivariate Computation and Causality in Complex Systems. Adaptive Privacy-Preserving Coded Computing with Hierarchical Task Partitioning. Advanced Exergy-Based Optimization of a Polygeneration System with CO2 as Working Fluid.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1