A Probabilistic Approach Considering Contingency Parameters for Peak Load Demand Forecasting

Md. Nasmus Sakib Khan Shabbir, M. Z. Ali, Xiaodong Liang, Muhammad Sifatul Alam Chowdhury
{"title":"A Probabilistic Approach Considering Contingency Parameters for Peak Load Demand Forecasting","authors":"Md. Nasmus Sakib Khan Shabbir, M. Z. Ali, Xiaodong Liang, Muhammad Sifatul Alam Chowdhury","doi":"10.1109/CJECE.2018.2876820","DOIUrl":null,"url":null,"abstract":"Accurate load forecasting is a critical step for power system generation planning. Contingency parameters of the system and their dynamic characteristics should be taken into account for the purpose of load forecasting. In this paper, a probabilistic load forecasting algorithm considering contingency parameters is developed for the peak load forecasting. Using the chi-square distribution test and historical data, the probabilistic distribution of contingency parameters can be determined. In a case study, the Monte Carlo simulation is run to forecast load demand and generation scenarios of Bangladesh based on the developed adaptive algorithm and the calculated probabilistic distribution. The influence of contingency parameters is evaluated using a Bayesian network in a sensitivity study.","PeriodicalId":55287,"journal":{"name":"Canadian Journal of Electrical and Computer Engineering-Revue Canadienne De Genie Electrique et Informatique","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CJECE.2018.2876820","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Electrical and Computer Engineering-Revue Canadienne De Genie Electrique et Informatique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CJECE.2018.2876820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

Abstract

Accurate load forecasting is a critical step for power system generation planning. Contingency parameters of the system and their dynamic characteristics should be taken into account for the purpose of load forecasting. In this paper, a probabilistic load forecasting algorithm considering contingency parameters is developed for the peak load forecasting. Using the chi-square distribution test and historical data, the probabilistic distribution of contingency parameters can be determined. In a case study, the Monte Carlo simulation is run to forecast load demand and generation scenarios of Bangladesh based on the developed adaptive algorithm and the calculated probabilistic distribution. The influence of contingency parameters is evaluated using a Bayesian network in a sensitivity study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种考虑偶然性参数的峰值负荷需求预测概率方法
准确的负荷预测是电力系统发电规划的关键环节。负荷预测需要考虑系统的偶然性参数及其动态特性。本文提出了一种考虑偶然性参数的电力系统峰值负荷概率预测算法。利用卡方分布检验和历史数据,可以确定偶然性参数的概率分布。以孟加拉为例,利用所开发的自适应算法和计算得到的概率分布,进行蒙特卡罗模拟,对孟加拉的电力需求和发电情景进行预测。在灵敏度研究中,利用贝叶斯网络评估了偶然性参数的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
27
期刊介绍: The Canadian Journal of Electrical and Computer Engineering (ISSN-0840-8688), issued quarterly, has been publishing high-quality refereed scientific papers in all areas of electrical and computer engineering since 1976
期刊最新文献
Design and Construction of an Advanced Tracking Wheel for Insulator Materials Testing Implementation of Ultrahigh-Speed Decimators Noncoherent Distributed Beamforming in Decentralized Two-Way Relay Networks Fetal ECG Extraction Using Input-Mode and Output-Mode Adaptive Filters With Blind Source Separation Design Consideration to Achieve Wide-Speed-Range Operation in a Switched Reluctance Motor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1