{"title":"Fault-Tolerant DSP Core Datapath Against Omnidirectional Spatial Impact of SET","authors":"Deepak Kachave, A. Sengupta","doi":"10.1109/CJECE.2019.2897624","DOIUrl":null,"url":null,"abstract":"Fault due to the single-event transient (SET) on digital signal processing (DSP) cores has not been thoroughly studied in the research community. Moreover, as the technology scaling becomes more intense, the impact of transient fault now becomes visible both in temporal and spatial domains. Few techniques have been presented in the literature that simultaneously address temporal and the spatial effects of transient fault. However, none of these approaches consider the omnidirectional spatial propagation of transient fault. Furthermore, these approaches have failed to consider the impact of transient fault on switching elements. This calls for methodology to tackle both the temporal and omnidirectional spatial effects of the transient fault on DSP cores. The proposed approach tackles these issues and presents a novel methodology to generate a low-cost fault-tolerant DSP core datapath against temporal (kc-cycle) and omnidirectional spatial (km-unit) impacts of SET.","PeriodicalId":55287,"journal":{"name":"Canadian Journal of Electrical and Computer Engineering-Revue Canadienne De Genie Electrique et Informatique","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CJECE.2019.2897624","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Electrical and Computer Engineering-Revue Canadienne De Genie Electrique et Informatique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CJECE.2019.2897624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
Fault due to the single-event transient (SET) on digital signal processing (DSP) cores has not been thoroughly studied in the research community. Moreover, as the technology scaling becomes more intense, the impact of transient fault now becomes visible both in temporal and spatial domains. Few techniques have been presented in the literature that simultaneously address temporal and the spatial effects of transient fault. However, none of these approaches consider the omnidirectional spatial propagation of transient fault. Furthermore, these approaches have failed to consider the impact of transient fault on switching elements. This calls for methodology to tackle both the temporal and omnidirectional spatial effects of the transient fault on DSP cores. The proposed approach tackles these issues and presents a novel methodology to generate a low-cost fault-tolerant DSP core datapath against temporal (kc-cycle) and omnidirectional spatial (km-unit) impacts of SET.
期刊介绍:
The Canadian Journal of Electrical and Computer Engineering (ISSN-0840-8688), issued quarterly, has been publishing high-quality refereed scientific papers in all areas of electrical and computer engineering since 1976