Evolution Surfaces for Spatiotemporal Visualization of Vortex Features

Simon Ferrari, Yaoping Hu, R. Martinuzzi
{"title":"Evolution Surfaces for Spatiotemporal Visualization of Vortex Features","authors":"Simon Ferrari, Yaoping Hu, R. Martinuzzi","doi":"10.1109/CJECE.2019.2917394","DOIUrl":null,"url":null,"abstract":"Turbulent fluid flow data are often 4-D, spatially and temporally complex, and require specific techniques for visualization. Common visualization techniques neglect the temporal aspect of this data, limiting the ability to convey feature motion, or offering the user a complicated visualization. To remedy this, we present an approach—evolution surfaces—focused on the spatiotemporal rendering of user-selected flow features (i.e., vortices). By abstracting the spatial representation of these features, the approach renders their spatiotemporal behavior with reduced visual complexity. The behavior of vortex features is presented as surfaces, with textures indicating properties of motion and evolution events (e.g., bifurcation and amalgamation) represented by the surface topology. We evaluated the approach on two data sets generated from empirical measurement and computational simulation (Re = 28 000 and Re = 1200, respectively). Our approach’s focus on handling evolution events makes it capable of visualizing higher Reynolds number (Re) flows than other surface-based techniques. This approach has been assessed by fluid dynamicists to assert the validity for flow analysis. Evolution surfaces offer a compact visualization of spatiotemporal vortex behaviors, opening potential avenues for exploration and analysis of fluid flows.","PeriodicalId":55287,"journal":{"name":"Canadian Journal of Electrical and Computer Engineering-Revue Canadienne De Genie Electrique et Informatique","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CJECE.2019.2917394","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Electrical and Computer Engineering-Revue Canadienne De Genie Electrique et Informatique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CJECE.2019.2917394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

Abstract

Turbulent fluid flow data are often 4-D, spatially and temporally complex, and require specific techniques for visualization. Common visualization techniques neglect the temporal aspect of this data, limiting the ability to convey feature motion, or offering the user a complicated visualization. To remedy this, we present an approach—evolution surfaces—focused on the spatiotemporal rendering of user-selected flow features (i.e., vortices). By abstracting the spatial representation of these features, the approach renders their spatiotemporal behavior with reduced visual complexity. The behavior of vortex features is presented as surfaces, with textures indicating properties of motion and evolution events (e.g., bifurcation and amalgamation) represented by the surface topology. We evaluated the approach on two data sets generated from empirical measurement and computational simulation (Re = 28 000 and Re = 1200, respectively). Our approach’s focus on handling evolution events makes it capable of visualizing higher Reynolds number (Re) flows than other surface-based techniques. This approach has been assessed by fluid dynamicists to assert the validity for flow analysis. Evolution surfaces offer a compact visualization of spatiotemporal vortex behaviors, opening potential avenues for exploration and analysis of fluid flows.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
涡旋特征时空可视化的演化曲面
湍流流体流动数据通常是4-D的,在空间和时间上都很复杂,需要特定的可视化技术。常见的可视化技术忽略了这些数据的时间方面,限制了传达特征运动的能力,或者为用户提供复杂的可视化。为了解决这个问题,我们提出了一种方法-进化表面-专注于用户选择的流动特征(即漩涡)的时空渲染。通过抽象这些特征的空间表示,该方法以降低视觉复杂性的方式呈现它们的时空行为。涡旋特征的行为表现为表面,表面拓扑结构表示运动和演化事件的性质(如分叉和合并)。我们在两个由经验测量和计算模拟生成的数据集(Re = 28000和Re = 1200)上对该方法进行了评估。我们的方法专注于处理演化事件,这使得它比其他基于表面的技术能够可视化更高的雷诺数(Re)流。这种方法已被流体动力学家评估,以断言流动分析的有效性。演化表面提供了时空涡旋行为的紧凑可视化,为流体流动的探索和分析开辟了潜在的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
27
期刊介绍: The Canadian Journal of Electrical and Computer Engineering (ISSN-0840-8688), issued quarterly, has been publishing high-quality refereed scientific papers in all areas of electrical and computer engineering since 1976
期刊最新文献
Design and Construction of an Advanced Tracking Wheel for Insulator Materials Testing Implementation of Ultrahigh-Speed Decimators Noncoherent Distributed Beamforming in Decentralized Two-Way Relay Networks Fetal ECG Extraction Using Input-Mode and Output-Mode Adaptive Filters With Blind Source Separation Design Consideration to Achieve Wide-Speed-Range Operation in a Switched Reluctance Motor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1