Xiaoze Dong, Shuo Qi, Imran Mahmood Khan, Yuhan Sun, Yin Zhang, Zhouping Wang
{"title":"Advances in riboswitch-based biosensor as food samples detection tool","authors":"Xiaoze Dong, Shuo Qi, Imran Mahmood Khan, Yuhan Sun, Yin Zhang, Zhouping Wang","doi":"10.1111/1541-4337.13077","DOIUrl":null,"url":null,"abstract":"<p>Food safety has always been a hot issue of social concern, and biosensing has been widely used in the field of food safety detection. Compared with traditional aptamer-based biosensors, aptamer-based riboswitch biosensing represents higher precision and programmability. A riboswitch is an elegant example of controlling gene expression, where the target is coupled to the aptamer domain, resulting in a conformational change in the downstream expression domain and determining the signal output. Riboswitch-based biosensing can be extensively applied to the portable real-time detection of food samples. The numerous key features of riboswitch-based biosensing emphasize their sustainability, renewable, and testing, which promises to transform engineering applications in the field of food safety. This review covers recent developments in riboswitch-based biosensors. The brief history, definition, and modular design (regulatory mode, reporter, and expression platform) of riboswitch-based biosensors are explained for better insight into the design and construction. We summarize recent advances in various riboswitch-based biosensors involving theophylline, malachite green, tetracycline, neomycin, fluoride, thrombin, naringenin, ciprofloxacin, and paromomycin, aiming to provide general guidance for the design of riboswitch-based biosensors. Finally, the challenges and prospects are also summarized as a way forward stratagem and signs of progress.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"22 1","pages":"451-472"},"PeriodicalIF":12.0000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comprehensive Reviews in Food Science and Food Safety","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1541-4337.13077","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 8
Abstract
Food safety has always been a hot issue of social concern, and biosensing has been widely used in the field of food safety detection. Compared with traditional aptamer-based biosensors, aptamer-based riboswitch biosensing represents higher precision and programmability. A riboswitch is an elegant example of controlling gene expression, where the target is coupled to the aptamer domain, resulting in a conformational change in the downstream expression domain and determining the signal output. Riboswitch-based biosensing can be extensively applied to the portable real-time detection of food samples. The numerous key features of riboswitch-based biosensing emphasize their sustainability, renewable, and testing, which promises to transform engineering applications in the field of food safety. This review covers recent developments in riboswitch-based biosensors. The brief history, definition, and modular design (regulatory mode, reporter, and expression platform) of riboswitch-based biosensors are explained for better insight into the design and construction. We summarize recent advances in various riboswitch-based biosensors involving theophylline, malachite green, tetracycline, neomycin, fluoride, thrombin, naringenin, ciprofloxacin, and paromomycin, aiming to provide general guidance for the design of riboswitch-based biosensors. Finally, the challenges and prospects are also summarized as a way forward stratagem and signs of progress.
期刊介绍:
Comprehensive Reviews in Food Science and Food Safety (CRFSFS) is an online peer-reviewed journal established in 2002. It aims to provide scientists with unique and comprehensive reviews covering various aspects of food science and technology.
CRFSFS publishes in-depth reviews addressing the chemical, microbiological, physical, sensory, and nutritional properties of foods, as well as food processing, engineering, analytical methods, and packaging. Manuscripts should contribute new insights and recommendations to the scientific knowledge on the topic. The journal prioritizes recent developments and encourages critical assessment of experimental design and interpretation of results.
Topics related to food safety, such as preventive controls, ingredient contaminants, storage, food authenticity, and adulteration, are considered. Reviews on food hazards must demonstrate validity and reliability in real food systems, not just in model systems. Additionally, reviews on nutritional properties should provide a realistic perspective on how foods influence health, considering processing and storage effects on bioactivity.
The journal also accepts reviews on consumer behavior, risk assessment, food regulations, and post-harvest physiology. Authors are encouraged to consult the Editor in Chief before submission to ensure topic suitability. Systematic reviews and meta-analyses on analytical and sensory methods, quality control, and food safety approaches are welcomed, with authors advised to follow IFIS Good review practice guidelines.