Miniature Vapor Compressor Refrigeration System for Electronic Cooling

Chih-Chung Chang, Nai-Wen Liang, Sih-Li Chen
{"title":"Miniature Vapor Compressor Refrigeration System for Electronic Cooling","authors":"Chih-Chung Chang, Nai-Wen Liang, Sih-Li Chen","doi":"10.1109/TCAPT.2010.2070800","DOIUrl":null,"url":null,"abstract":"This paper experimentally investigated the thermal performance of a miniature vapor compressor refrigeration system using a thermal resistance model for electronic cooling. The evaporator, compressor, expansion valve, and condenser are the four main devices forming the refrigeration system with R-134a as a working fluid. The experimental parameters considered were the openings of the expansion valve and input heating power. The results indicated that the system in this paper had the largest cooling capacity of 150 W and coefficient of performance of 4.25 at the 8th and 9th openings of the expansion valve, respectively. The results also showed that correlations of the thermal resistance of the evaporator and the condenser are developed with experimental data and their precision, compared with the experimental data, was about 4.42% and 12%, respectively. Besides the adjustment of the compressor speed could decrease the possibility of the occurrence of condensation phenomena near the inlet and outlet of the evaporator. Also, the smallest dimension of the combination of the evaporator and condenser is presented at the input heating power of 150 W and the 8th opening of the expansion valve.","PeriodicalId":55013,"journal":{"name":"IEEE Transactions on Components and Packaging Technologies","volume":"33 1","pages":"794-800"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TCAPT.2010.2070800","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Components and Packaging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TCAPT.2010.2070800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper experimentally investigated the thermal performance of a miniature vapor compressor refrigeration system using a thermal resistance model for electronic cooling. The evaporator, compressor, expansion valve, and condenser are the four main devices forming the refrigeration system with R-134a as a working fluid. The experimental parameters considered were the openings of the expansion valve and input heating power. The results indicated that the system in this paper had the largest cooling capacity of 150 W and coefficient of performance of 4.25 at the 8th and 9th openings of the expansion valve, respectively. The results also showed that correlations of the thermal resistance of the evaporator and the condenser are developed with experimental data and their precision, compared with the experimental data, was about 4.42% and 12%, respectively. Besides the adjustment of the compressor speed could decrease the possibility of the occurrence of condensation phenomena near the inlet and outlet of the evaporator. Also, the smallest dimension of the combination of the evaporator and condenser is presented at the input heating power of 150 W and the 8th opening of the expansion valve.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于电子冷却的微型蒸汽压缩机制冷系统
本文采用电子冷却热阻模型对小型蒸汽压缩机制冷系统的热性能进行了实验研究。蒸发器、压缩机、膨胀阀和冷凝器是组成以R-134a为工作流体的制冷系统的四个主要装置。实验参数考虑的是膨胀阀开度和输入加热功率。结果表明,本文系统在膨胀阀第8、9开度处制冷量最大,为150w,性能系数为4.25。利用实验数据建立了蒸发器和冷凝器热阻的关系式,其精度分别为4.42%和12%。此外,调节压缩机转速可以减少蒸发器进出口附近发生冷凝现象的可能性。同时给出了输入加热功率为150w,膨胀阀开度为第8开度时蒸发器和冷凝器组合的最小尺寸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Venipuncture-related traumatic neuroma of the ulnar nerve on the dorsal of a hand: A case report. CFTR pharmacology. Editorial For a Brighter Future: Solid State Lighting Influence of Die Attach Layer on Thermal Performance of High Power Light Emitting Diodes Electrical Contact Resistance in Thin $({\leq}{\rm 0.5}~\mu{\rm m})$ Gold Plated Contacts: Effect of Gold Plating Thickness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1