Multi-View Video Synopsis via Simultaneous Object-Shifting and View-Switching Optimization.

IF 10.8 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Image Processing Pub Date : 2019-09-04 DOI:10.1109/TIP.2019.2938086
Zhensong Zhang, Yongwei Nie, Hanqiu Sun, Qing Zhang, Qiuxia Lai, Guiqing Li, Mingyu Xiao
{"title":"Multi-View Video Synopsis via Simultaneous Object-Shifting and View-Switching Optimization.","authors":"Zhensong Zhang, Yongwei Nie, Hanqiu Sun, Qing Zhang, Qiuxia Lai, Guiqing Li, Mingyu Xiao","doi":"10.1109/TIP.2019.2938086","DOIUrl":null,"url":null,"abstract":"<p><p>We present a method for synopsizing multiple videos captured by a set of surveillance cameras with some overlapped field-of-views. Currently, object-based approaches that directly shift objects along the time axis are already able to compute compact synopsis results for multiple surveillance videos. The challenge is how to present the multiple synopsis results in a more compact and understandable way. Previous approaches show them side by side on the screen, which however is difficult for user to comprehend. In this paper, we solve the problem by joint object-shifting and camera view-switching. Firstly, we synchronize the input videos, and group the same object in different videos together. Then we shift the groups of objects along the time axis to obtain multiple synopsis videos. Instead of showing them simultaneously, we just show one of them at each time, and allow to switch among the views of different synopsis videos. In this view switching way, we obtain just a single synopsis results consisting of content from all the input videos, which is much easier for user to follow and understand. To obtain the best synopsis result, we construct a simultaneous object-shifting and view-switching optimization framework instead of solving them separately. We also present an alternative optimization strategy composed of graph cuts and dynamic programming to solve the unified optimization. Experiments demonstrate that our single synopsis video generated from multiple input videos is compact, complete, and easy to understand.</p>","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"29 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2019-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TIP.2019.2938086","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We present a method for synopsizing multiple videos captured by a set of surveillance cameras with some overlapped field-of-views. Currently, object-based approaches that directly shift objects along the time axis are already able to compute compact synopsis results for multiple surveillance videos. The challenge is how to present the multiple synopsis results in a more compact and understandable way. Previous approaches show them side by side on the screen, which however is difficult for user to comprehend. In this paper, we solve the problem by joint object-shifting and camera view-switching. Firstly, we synchronize the input videos, and group the same object in different videos together. Then we shift the groups of objects along the time axis to obtain multiple synopsis videos. Instead of showing them simultaneously, we just show one of them at each time, and allow to switch among the views of different synopsis videos. In this view switching way, we obtain just a single synopsis results consisting of content from all the input videos, which is much easier for user to follow and understand. To obtain the best synopsis result, we construct a simultaneous object-shifting and view-switching optimization framework instead of solving them separately. We also present an alternative optimization strategy composed of graph cuts and dynamic programming to solve the unified optimization. Experiments demonstrate that our single synopsis video generated from multiple input videos is compact, complete, and easy to understand.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过同时优化对象移动和视图切换实现多视图视频概要
我们提出了一种方法,用于对一组监控摄像机拍摄的多路视频进行视场重叠的综合分析。目前,直接沿时间轴移动对象的基于对象的方法已经能够为多个监控视频计算出紧凑的概要结果。目前的挑战是如何以更紧凑、更易懂的方式呈现多个概要结果。以前的方法是将它们并排显示在屏幕上,但用户很难理解。在本文中,我们通过联合对象移动和摄像机视图切换来解决这一问题。首先,我们对输入视频进行同步,并将不同视频中的相同物体分组。然后,我们沿时间轴移动对象组,得到多个概要视频。我们不同时播放这些视频,而是每次只播放其中一个,并允许在不同的概要视频中切换视图。通过这种视图切换方式,我们只需获得一个由所有输入视频内容组成的提要结果,这更便于用户观看和理解。为了获得最佳的概要结果,我们构建了一个同时进行对象移动和视图切换的优化框架,而不是分别解决这两个问题。我们还提出了一种由图切割和动态编程组成的替代优化策略,以解决统一优化问题。实验证明,我们从多个输入视频生成的单一视频概要紧凑、完整且易于理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Image Processing
IEEE Transactions on Image Processing 工程技术-工程:电子与电气
CiteScore
20.90
自引率
6.60%
发文量
774
审稿时长
7.6 months
期刊介绍: The IEEE Transactions on Image Processing delves into groundbreaking theories, algorithms, and structures concerning the generation, acquisition, manipulation, transmission, scrutiny, and presentation of images, video, and multidimensional signals across diverse applications. Topics span mathematical, statistical, and perceptual aspects, encompassing modeling, representation, formation, coding, filtering, enhancement, restoration, rendering, halftoning, search, and analysis of images, video, and multidimensional signals. Pertinent applications range from image and video communications to electronic imaging, biomedical imaging, image and video systems, and remote sensing.
期刊最新文献
Salient Object Detection in RGB-D Videos Transformer-based Light Field Salient Object Detection and Its Application to Autofocus EvRepSL: Event-Stream Representation via Self-Supervised Learning for Event-Based Vision DeepDuoHDR: A Low Complexity Two Exposure Algorithm for HDR Deghosting on Mobile Devices Dynamic Semantic-based Spatial-Temporal Graph Convolution Network for Skeleton-based Human Action Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1