Development of Microelectrode Arrays Using Electroless Plating for CMOS-Based Direct Counting of Bacterial and HeLa Cells

IF 3.8 2区 医学 Q2 ENGINEERING, BIOMEDICAL IEEE Transactions on Biomedical Circuits and Systems Pub Date : 2015-11-06 DOI:10.1109/TBCAS.2015.2479656
K. Niitsu, S. Ota, Kohei Gamo, H. Kondo, M. Hori, K. Nakazato
{"title":"Development of Microelectrode Arrays Using Electroless Plating for CMOS-Based Direct Counting of Bacterial and HeLa Cells","authors":"K. Niitsu, S. Ota, Kohei Gamo, H. Kondo, M. Hori, K. Nakazato","doi":"10.1109/TBCAS.2015.2479656","DOIUrl":null,"url":null,"abstract":"The development of two new types of high-density, electroless plated microelectrode arrays for CMOS-based high-sensitivity direct bacteria and HeLa cell counting are presented. For emerging high-sensitivity direct pathogen counting, two technical challenges must be addressed. One is the formation of a bacteria-sized microelectrode, and the other is the development of a high-sensitivity and high-speed amperometry circuit. The requirement for microelectrode formation is that the gold microelectrodes are required to be as small as the target cell. By improving a self-aligned electroless plating technique, the dimensions of the microelectrodes on a CMOS sensor chip in this work were successfully reduced to 1.2 μm × 2.05 μm. This is 1/20th of the smallest size reported in the literature. Since a bacteria-sized microelectrode has a severe limitation on the current flow, the amperometry circuit has to have a high sensitivity and high speed with low noise. In this work, a current buffer was inserted to mitigate the potential fluctuation. Three test chips were fabricated using a 0.6- μm CMOS process: two with 1.2 μm × 2.05 μm (1024 × 1024 and 4 × 4) sensor arrays and one with 6- μm square (16 × 16) sensor arrays; and the microelectrodes were formed on them using electroless plating. The uniformity among the 1024 × 1024 electrodes arranged with a pitch of 3.6 μm × 4.45 μm was optically verified. For improving sensitivity, the trenches on each microelectrode were developed and verified optically and electrochemically for the first time. Higher sensitivity can be achieved by introducing a trench structure than by using a conventional microelectrode formed by contact photolithography. Cyclic voltammetry (CV) measurements obtained using the 1.2 μm × 2.05 μm 4 × 4 and 6- μm square 16 × 16 sensor array with electroless-plated microelectrodes successfully demonstrated direct counting of the bacteria-sized microbeads and HeLa cells.","PeriodicalId":13151,"journal":{"name":"IEEE Transactions on Biomedical Circuits and Systems","volume":"9 1","pages":"607-619"},"PeriodicalIF":3.8000,"publicationDate":"2015-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TBCAS.2015.2479656","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBCAS.2015.2479656","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 62

Abstract

The development of two new types of high-density, electroless plated microelectrode arrays for CMOS-based high-sensitivity direct bacteria and HeLa cell counting are presented. For emerging high-sensitivity direct pathogen counting, two technical challenges must be addressed. One is the formation of a bacteria-sized microelectrode, and the other is the development of a high-sensitivity and high-speed amperometry circuit. The requirement for microelectrode formation is that the gold microelectrodes are required to be as small as the target cell. By improving a self-aligned electroless plating technique, the dimensions of the microelectrodes on a CMOS sensor chip in this work were successfully reduced to 1.2 μm × 2.05 μm. This is 1/20th of the smallest size reported in the literature. Since a bacteria-sized microelectrode has a severe limitation on the current flow, the amperometry circuit has to have a high sensitivity and high speed with low noise. In this work, a current buffer was inserted to mitigate the potential fluctuation. Three test chips were fabricated using a 0.6- μm CMOS process: two with 1.2 μm × 2.05 μm (1024 × 1024 and 4 × 4) sensor arrays and one with 6- μm square (16 × 16) sensor arrays; and the microelectrodes were formed on them using electroless plating. The uniformity among the 1024 × 1024 electrodes arranged with a pitch of 3.6 μm × 4.45 μm was optically verified. For improving sensitivity, the trenches on each microelectrode were developed and verified optically and electrochemically for the first time. Higher sensitivity can be achieved by introducing a trench structure than by using a conventional microelectrode formed by contact photolithography. Cyclic voltammetry (CV) measurements obtained using the 1.2 μm × 2.05 μm 4 × 4 and 6- μm square 16 × 16 sensor array with electroless-plated microelectrodes successfully demonstrated direct counting of the bacteria-sized microbeads and HeLa cells.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于cmos的细菌和HeLa细胞直接计数用化学镀微电极阵列的研制
介绍了两种新型高密度、化学镀微电极阵列的研究进展,用于基于cmos的高灵敏度直接细菌计数和HeLa细胞计数。对于新出现的高灵敏度直接病原体计数,必须解决两个技术挑战。一个是形成细菌大小的微电极,另一个是开发高灵敏度和高速安培电路。形成微电极的要求是金微电极必须和靶细胞一样小。通过改进自对准化学镀技术,成功地将CMOS传感器芯片上的微电极尺寸减小到1.2 μm × 2.05 μm。这是文献中最小尺寸的1/20。由于细菌大小的微电极对电流有严重的限制,因此电流测量电路必须具有高灵敏度、高速度和低噪声。在这项工作中,插入了一个电流缓冲器来减轻潜在的波动。采用0.6 μm CMOS工艺制备了3个测试芯片:2个为1.2 μm × 2.05 μm (1024 × 1024和4 × 4)传感器阵列,1个为6 μm方形(16 × 16)传感器阵列;用化学镀的方法在其上形成微电极。以3.6 μm × 4.45 μm的间距布置的1024 × 1024电极之间的均匀性进行了光学验证。为了提高灵敏度,首次开发了微电极上的沟槽,并进行了光学和电化学验证。通过引入沟槽结构,可以实现比使用传统的接触光刻形成的微电极更高的灵敏度。使用1.2 μm × 2.05 μm × 4 × 4和6 μm平方16 × 16传感器阵列和化学镀微电极获得的循环伏安法(CV)测量成功地证明了细菌大小的微珠和HeLa细胞的直接计数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Biomedical Circuits and Systems
IEEE Transactions on Biomedical Circuits and Systems 工程技术-工程:电子与电气
CiteScore
10.00
自引率
13.70%
发文量
174
审稿时长
3 months
期刊介绍: The IEEE Transactions on Biomedical Circuits and Systems addresses areas at the crossroads of Circuits and Systems and Life Sciences. The main emphasis is on microelectronic issues in a wide range of applications found in life sciences, physical sciences and engineering. The primary goal of the journal is to bridge the unique scientific and technical activities of the Circuits and Systems Society to a wide variety of related areas such as: • Bioelectronics • Implantable and wearable electronics like cochlear and retinal prosthesis, motor control, etc. • Biotechnology sensor circuits, integrated systems, and networks • Micropower imaging technology • BioMEMS • Lab-on-chip Bio-nanotechnology • Organic Semiconductors • Biomedical Engineering • Genomics and Proteomics • Neuromorphic Engineering • Smart sensors • Low power micro- and nanoelectronics • Mixed-mode system-on-chip • Wireless technology • Gene circuits and molecular circuits • System biology • Brain science and engineering: such as neuro-informatics, neural prosthesis, cognitive engineering, brain computer interface • Healthcare: information technology for biomedical, epidemiology, and other related life science applications. General, theoretical, and application-oriented papers in the abovementioned technical areas with a Circuits and Systems perspective are encouraged to publish in TBioCAS. Of special interest are biomedical-oriented papers with a Circuits and Systems angle.
期刊最新文献
A 1024-Channel Simultaneous Electrophysiological and Electrochemical Neural Recording System with In-Pixel Digitization and Crosstalk Compensation A 13.56-MHz 93.5%-Efficiency Optimal On/Off Timing Tracking Active Rectifier with Digital Feedback-Based Adaptive Delay Control An Ultra-Low Power Wearable BMI System with Continual Learning Capabilities Real-Time sEMG Processing with Spiking Neural Networks on a Low-Power 5K-LUT FPGA A Tiny Transformer for Low-Power Arrhythmia Classification on Microcontrollers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1