Deep Neural Networks for Identifying Cough Sounds

IF 3.8 2区 医学 Q2 ENGINEERING, BIOMEDICAL IEEE Transactions on Biomedical Circuits and Systems Pub Date : 2016-09-16 DOI:10.1109/TBCAS.2016.2598794
Justice Amoh, K. Odame
{"title":"Deep Neural Networks for Identifying Cough Sounds","authors":"Justice Amoh, K. Odame","doi":"10.1109/TBCAS.2016.2598794","DOIUrl":null,"url":null,"abstract":"In this paper, we consider two different approaches of using deep neural networks for cough detection. The cough detection task is cast as a visual recognition problem and as a sequence-to-sequence labeling problem. A convolutional neural network and a recurrent neural network are implemented to address these problems, respectively. We evaluate the performance of the two networks and compare them to other conventional approaches for identifying cough sounds. In addition, we also explore the effect of the network size parameters and the impact of long-term signal dependencies in cough classifier performance. Experimental results show both network architectures outperform traditional methods. Between the two, our convolutional network yields a higher specificity 92.7% whereas the recurrent attains a higher sensitivity of 87.7%.","PeriodicalId":13151,"journal":{"name":"IEEE Transactions on Biomedical Circuits and Systems","volume":"10 1","pages":"1003-1011"},"PeriodicalIF":3.8000,"publicationDate":"2016-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TBCAS.2016.2598794","citationCount":"98","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBCAS.2016.2598794","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 98

Abstract

In this paper, we consider two different approaches of using deep neural networks for cough detection. The cough detection task is cast as a visual recognition problem and as a sequence-to-sequence labeling problem. A convolutional neural network and a recurrent neural network are implemented to address these problems, respectively. We evaluate the performance of the two networks and compare them to other conventional approaches for identifying cough sounds. In addition, we also explore the effect of the network size parameters and the impact of long-term signal dependencies in cough classifier performance. Experimental results show both network architectures outperform traditional methods. Between the two, our convolutional network yields a higher specificity 92.7% whereas the recurrent attains a higher sensitivity of 87.7%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
识别咳嗽声音的深度神经网络
在本文中,我们考虑了使用深度神经网络进行咳嗽检测的两种不同方法。咳嗽检测任务被视为一个视觉识别问题和一个序列到序列的标记问题。分别实现了卷积神经网络和递归神经网络来解决这些问题。我们评估了这两个网络的性能,并将它们与其他识别咳嗽声音的传统方法进行了比较。此外,我们还探讨了网络大小参数和长期信号依赖对咳嗽分类器性能的影响。实验结果表明,这两种网络结构都优于传统方法。在两者之间,我们的卷积网络产生更高的特异性92.7%,而复发达到更高的敏感性87.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Biomedical Circuits and Systems
IEEE Transactions on Biomedical Circuits and Systems 工程技术-工程:电子与电气
CiteScore
10.00
自引率
13.70%
发文量
174
审稿时长
3 months
期刊介绍: The IEEE Transactions on Biomedical Circuits and Systems addresses areas at the crossroads of Circuits and Systems and Life Sciences. The main emphasis is on microelectronic issues in a wide range of applications found in life sciences, physical sciences and engineering. The primary goal of the journal is to bridge the unique scientific and technical activities of the Circuits and Systems Society to a wide variety of related areas such as: • Bioelectronics • Implantable and wearable electronics like cochlear and retinal prosthesis, motor control, etc. • Biotechnology sensor circuits, integrated systems, and networks • Micropower imaging technology • BioMEMS • Lab-on-chip Bio-nanotechnology • Organic Semiconductors • Biomedical Engineering • Genomics and Proteomics • Neuromorphic Engineering • Smart sensors • Low power micro- and nanoelectronics • Mixed-mode system-on-chip • Wireless technology • Gene circuits and molecular circuits • System biology • Brain science and engineering: such as neuro-informatics, neural prosthesis, cognitive engineering, brain computer interface • Healthcare: information technology for biomedical, epidemiology, and other related life science applications. General, theoretical, and application-oriented papers in the abovementioned technical areas with a Circuits and Systems perspective are encouraged to publish in TBioCAS. Of special interest are biomedical-oriented papers with a Circuits and Systems angle.
期刊最新文献
A 1024-Channel Simultaneous Electrophysiological and Electrochemical Neural Recording System with In-Pixel Digitization and Crosstalk Compensation A 13.56-MHz 93.5%-Efficiency Optimal On/Off Timing Tracking Active Rectifier with Digital Feedback-Based Adaptive Delay Control An Ultra-Low Power Wearable BMI System with Continual Learning Capabilities Real-Time sEMG Processing with Spiking Neural Networks on a Low-Power 5K-LUT FPGA A Tiny Transformer for Low-Power Arrhythmia Classification on Microcontrollers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1