{"title":"Complete enumeration of compact structural motifs in proteins","authors":"Bhadrachalam Chitturi, D. Bein, N. Grishin","doi":"10.1145/1722024.1722047","DOIUrl":null,"url":null,"abstract":"The search of structural motifs that specify the spatial arrangement of polypeptide segments is preferred over other methods such as common substructure discovery and structural superposition in comparing protein structures. 3D protein structures can be modeled as graphs whose maximum degree is bounded by a constant. Structural motifs can also be modeled as graphs and a significant percentage of them are trees. Thus, motif search in proteins can be modeled as an enumeration of isomorphic subgraphs where a query tree Q with m nodes is searched in a sparse graph G with n nodes and the maximum degree of any node in G is bounded by a constant ε. We design an efficient divide-and-conquer algorithm that finds all copies of Q in G by partitioning Q using a minimum dominating set. This strategy can be extended to sparse query graphs that can be reduced to trees by deleting a small number of edges.","PeriodicalId":39379,"journal":{"name":"In Silico Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/1722024.1722047","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Silico Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1722024.1722047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 10
Abstract
The search of structural motifs that specify the spatial arrangement of polypeptide segments is preferred over other methods such as common substructure discovery and structural superposition in comparing protein structures. 3D protein structures can be modeled as graphs whose maximum degree is bounded by a constant. Structural motifs can also be modeled as graphs and a significant percentage of them are trees. Thus, motif search in proteins can be modeled as an enumeration of isomorphic subgraphs where a query tree Q with m nodes is searched in a sparse graph G with n nodes and the maximum degree of any node in G is bounded by a constant ε. We design an efficient divide-and-conquer algorithm that finds all copies of Q in G by partitioning Q using a minimum dominating set. This strategy can be extended to sparse query graphs that can be reduced to trees by deleting a small number of edges.
In Silico BiologyComputer Science-Computational Theory and Mathematics
CiteScore
2.20
自引率
0.00%
发文量
1
期刊介绍:
The considerable "algorithmic complexity" of biological systems requires a huge amount of detailed information for their complete description. Although far from being complete, the overwhelming quantity of small pieces of information gathered for all kind of biological systems at the molecular and cellular level requires computational tools to be adequately stored and interpreted. Interpretation of data means to abstract them as much as allowed to provide a systematic, an integrative view of biology. Most of the presently available scientific journals focus either on accumulating more data from elaborate experimental approaches, or on presenting new algorithms for the interpretation of these data. Both approaches are meritorious.