A Framework for Modifying Orchestral Qualities in Computer-Aided Orchestration

IF 0.4 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer Music Journal Pub Date : 2023-04-18 DOI:10.1162/comj_a_00621
Daniele Ghisi;Carmine-Emanuele Cella
{"title":"A Framework for Modifying Orchestral Qualities in Computer-Aided Orchestration","authors":"Daniele Ghisi;Carmine-Emanuele Cella","doi":"10.1162/comj_a_00621","DOIUrl":null,"url":null,"abstract":"This article introduces the Orchidea Orchestral Qualities framework (OOQ), an extension of the Orchidea environment for computer-aided orchestration. Traditional target-based orchestration generally reconstructs a target sound “as faithfully as possible” with a collection of samples. But more often than not, composers do not have specific targets in mind while performing orchestration tasks. A large class of orchestration practices deal with the transformation of musical material to enhance or reduce certain of its qualities (such as making a score more “brilliant,” “blurry,” “dense,” and so on). The OOQ framework implements this idea by making use of an analogy with digital signal processing. Scores and sounds are no longer used as targets, but rather as “sources” to be processed, not unlike what happens within a channel strip of a modern digital audio workstation. This article presents the rationale behind the OOQ framework, describes the behavior of its modules, and traces a path for future research on the subject.","PeriodicalId":50639,"journal":{"name":"Computer Music Journal","volume":"45 4","pages":"57-72"},"PeriodicalIF":0.4000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Music Journal","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10302168/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

This article introduces the Orchidea Orchestral Qualities framework (OOQ), an extension of the Orchidea environment for computer-aided orchestration. Traditional target-based orchestration generally reconstructs a target sound “as faithfully as possible” with a collection of samples. But more often than not, composers do not have specific targets in mind while performing orchestration tasks. A large class of orchestration practices deal with the transformation of musical material to enhance or reduce certain of its qualities (such as making a score more “brilliant,” “blurry,” “dense,” and so on). The OOQ framework implements this idea by making use of an analogy with digital signal processing. Scores and sounds are no longer used as targets, but rather as “sources” to be processed, not unlike what happens within a channel strip of a modern digital audio workstation. This article presents the rationale behind the OOQ framework, describes the behavior of its modules, and traces a path for future research on the subject.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算机辅助编曲中管弦乐品质修改的框架
本文介绍了Orchidea管弦乐质量框架(Orchestral quales framework, OOQ),它是用于计算机辅助编曲的Orchidea环境的扩展。传统的基于目标的编曲通常是用采样集“尽可能忠实地”重建目标声音。但通常情况下,作曲家在执行管弦乐任务时没有特定的目标。大量的管弦乐练习涉及音乐材料的转换,以增强或减少其某些品质(例如使乐谱更“辉煌”,“模糊”,“密集”,等等)。OOQ框架通过类比数字信号处理来实现这个想法。乐谱和声音不再用作目标,而是作为要处理的“源”,这与现代数字音频工作站的声道带中发生的事情没有什么不同。本文介绍了OOQ框架背后的基本原理,描述了其模块的行为,并为该主题的未来研究指明了方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Music Journal
Computer Music Journal 工程技术-计算机:跨学科应用
CiteScore
1.80
自引率
0.00%
发文量
2
审稿时长
>12 weeks
期刊介绍: Computer Music Journal is published quarterly with an annual sound and video anthology containing curated music¹. For four decades, it has been the leading publication about computer music, concentrating fully on digital sound technology and all musical applications of computers. This makes it an essential resource for musicians, composers, scientists, engineers, computer enthusiasts, and anyone exploring the wonders of computer-generated sound. Edited by experts in the field and featuring an international advisory board of eminent computer musicians, issues typically include: In-depth articles on cutting-edge research and developments in technology, methods, and aesthetics of computer music Reports on products of interest, such as new audio and MIDI software and hardware Interviews with leading composers of computer music Announcements of and reports on conferences and courses in the United States and abroad Publication, event, and recording reviews Tutorials, letters, and editorials Numerous graphics, photographs, scores, algorithms, and other illustrations.
期刊最新文献
Finite State Machines with Data Paths in Visual Languages for Music Generating Sonic Phantoms with Quadratic Difference Tone Spectrum Synthesis Embodying Spatial Sound Synthesis with AI in Two Compositions for Instruments and 3-D Electronics Cocreative Interaction: Somax2 and the REACH Project Live Coding Machine Learning: Finding the Moments of Intervention in Autonomous Processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1