PAPR Reduction in MIMO-OFDM Systems Using Low- Complexity Additive Signal Mixing

Q3 Engineering Journal of Communications Pub Date : 2021-01-01 DOI:10.12720/jcm.16.11.468-478
Stephen Kiambi, E. Mwangi, G. Kamucha
{"title":"PAPR Reduction in MIMO-OFDM Systems Using Low- Complexity Additive Signal Mixing","authors":"Stephen Kiambi, E. Mwangi, G. Kamucha","doi":"10.12720/jcm.16.11.468-478","DOIUrl":null,"url":null,"abstract":"A MIMO-OFDM wireless communication technique possesses several advantages accrued from combining MIMO and OFDM techniques such as increased channel capacity and improved BER performance. This has made the technique very amiable to current and future generations of communication systems for high data-rate transmission. However, the technique also inherits the high PAPR problem associated with OFDM signals—a problem still requiring a practical solution. This work proposes a PAPR reduction algorithm for solving the problem of high PAPR in MIMO-OFDM systems. The proposed method uses a low-complexity signal mixing concept to combine the original transmit signal and a generated peak-cancelling signal. The computational complexity of the proposed method is O(M) , which is very much less than O(N log2 N) of the FFT algorithms. This is because M, which denotes the number of nonzero peakcancelling samples, is much less than N, the FFT window size. The proposed method was found to achieve high PAPR reductions while utilizing only a few nonzero peak-cancelling samples and it does not significantly change the power of the transmitted signal. For example, with M=5% of 256-point IFFT samples, corresponding to a data rate loss of 4.8%, a large PAPR reduction of 5.9 dB could be achieved at a small power loss of 0.09 dB. Compared with other methods proposed in literature, the proposed method was found to outperform them in terms of PAPR reductions and BER performance.","PeriodicalId":53518,"journal":{"name":"Journal of Communications","volume":"121 1","pages":"468-478"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12720/jcm.16.11.468-478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5

Abstract

A MIMO-OFDM wireless communication technique possesses several advantages accrued from combining MIMO and OFDM techniques such as increased channel capacity and improved BER performance. This has made the technique very amiable to current and future generations of communication systems for high data-rate transmission. However, the technique also inherits the high PAPR problem associated with OFDM signals—a problem still requiring a practical solution. This work proposes a PAPR reduction algorithm for solving the problem of high PAPR in MIMO-OFDM systems. The proposed method uses a low-complexity signal mixing concept to combine the original transmit signal and a generated peak-cancelling signal. The computational complexity of the proposed method is O(M) , which is very much less than O(N log2 N) of the FFT algorithms. This is because M, which denotes the number of nonzero peakcancelling samples, is much less than N, the FFT window size. The proposed method was found to achieve high PAPR reductions while utilizing only a few nonzero peak-cancelling samples and it does not significantly change the power of the transmitted signal. For example, with M=5% of 256-point IFFT samples, corresponding to a data rate loss of 4.8%, a large PAPR reduction of 5.9 dB could be achieved at a small power loss of 0.09 dB. Compared with other methods proposed in literature, the proposed method was found to outperform them in terms of PAPR reductions and BER performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用低复杂度加性信号混合降低MIMO-OFDM系统的PAPR
MIMO-OFDM无线通信技术具有MIMO和OFDM技术相结合的优点,如增加信道容量和改善误码率性能。这使得该技术非常适合当前和未来几代通信系统的高数据速率传输。然而,该技术也继承了与OFDM信号相关的高PAPR问题,这个问题仍然需要一个实际的解决方案。针对MIMO-OFDM系统中PAPR过高的问题,提出了一种PAPR降低算法。该方法采用低复杂度的信号混合概念,将原始发射信号与生成的消峰信号进行组合。该方法的计算复杂度为O(M),远远小于FFT算法的O(N log2 N)。这是因为M(表示非零峰值抵消样本的数量)远小于N (FFT窗口大小)。研究发现,该方法在利用少量非零消峰样本的同时实现了较高的PAPR降低,并且不会显著改变传输信号的功率。例如,如果256点IFFT样本的M=5%,对应于4.8%的数据速率损失,则可以在0.09 dB的小功率损失下实现5.9 dB的大PAPR降低。与文献中提出的其他方法进行比较,发现该方法在PAPR降低和BER性能方面优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Communications
Journal of Communications Engineering-Electrical and Electronic Engineering
CiteScore
3.40
自引率
0.00%
发文量
29
期刊介绍: JCM is a scholarly peer-reviewed international scientific journal published monthly, focusing on theories, systems, methods, algorithms and applications in communications. It provide a high profile, leading edge forum for academic researchers, industrial professionals, engineers, consultants, managers, educators and policy makers working in the field to contribute and disseminate innovative new work on communications. All papers will be blind reviewed and accepted papers will be published monthly which is available online (open access) and in printed version.
期刊最新文献
Spectral-Efficient Aircraft Pairing for Massive MIMO NOMA in Aeronautical Communication Routing Protocol against Flooding Attack Using Median Value and Fixed Threshold Reduction of OFDM PAPR Using a Combined Hadamard Transformation and Selective Mapping for Terrestrial DAB+ System under Rayleigh and AWGN Channel Please Use a three-wire Watch a Novel Protocol Designed for Addressing Hidden and Exposed Layer Issues in the Medium Access Control Layer of Mobile Adhoc Network The Comparison of Dry Hydrostatic Delay Measurement from GPS Ground-Based and Space- Based Receiver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1