Wang Changling, He Xiongkui, Zeng Aijun, A. Herbst, Supakorn Wongsuk, Qiao Baiyu, Zhao Cheng, Yuan Shankui, Zhong Ling, V. Overbeck, J. Bonds, Yang Yi, Zhou Guoqiang, Wang Xuan, G. Wanlin
{"title":"Measuring method and experiment on spray drift of chemicals applied by UAV sprayer based on an artificial orchard test bench","authors":"Wang Changling, He Xiongkui, Zeng Aijun, A. Herbst, Supakorn Wongsuk, Qiao Baiyu, Zhao Cheng, Yuan Shankui, Zhong Ling, V. Overbeck, J. Bonds, Yang Yi, Zhou Guoqiang, Wang Xuan, G. Wanlin","doi":"10.11975/J.ISSN.1002-6819.2020.13.007","DOIUrl":null,"url":null,"abstract":"In recent years, low-altitude and low-volume plant protection operations using unmanned aerial vehicle (UAV) sprayer developed rapidly in China with the advantages of high efficiency, labour saving, high safety, high terrain adaptability, high flexibility, water and chemicals saving, and high intelligence. With the UAV application technology in field crops is becoming more and more mature, aerial spraying operations in orchards are promising and in the ascendant, but a high risk of UAV spray drift is appearing due to high working height and fine droplets sprayed in slope orchards, highlighting the necessity of the study on the spray drift characteristics of UAV chemicals application for fruit trees. Therefore, based on previous research, a novel type of measuring method of spray drift for UAV chemicals application in orchard was proposed in this study and an artificial orchard test stand (vineyard) and 3 airborne drift frame collectors were designed and built, and a set of field drift test bench was firstly used to collect aerial spray drift droplets at different downwind distances, together with ground drift collectors and canopy deposition collectors. An airborne drift index (ADX) of UAV’s spray was initially applied for quantitative analysis to compare spray drift characteristics of different models of unmanned aircrafts and variable operation parameters. Fluorescence tracer Pyranine water solution was prepared at the concentration of 0.1% as the spray liquid. Four typical types of plant protection UAV (a single-rotor oil-powered helicopter, a 6-rotor motor drone and two models of 8-rotor motor drones) equipped with conventional hollow cone nozzle ‘TR 80-0067’ and air-induction anti-drift nozzle ‘IDK 120-015’were tested in the artificial vineyard, and results of canopy deposition distribution, ground sediment drift, near-ground drift, and airborne drift were obtained and analysed, and different sampling collectors for spray drift were evaluated and compared. The results showed that: Under the environmental conditions that the nominal crosswind speed was 2.4-3.6 m/s, the temperature was 29.8-34.3 ℃ and relative humidity was 10.7%-30.6%, at the flight height of 1.5 m (3.5 m from the ground) and the speed of 2.0 m/s the air-induction nozzle IDK can significantly reduce the level of downwind spray drift of UAV, optimize the uniformity of deposition distribution and increase the effective utilization rate of chemicals; There was no significant difference in the drift characteristics of the 4 types of unmanned aircraft, and the vortex generated by the combination of the rotor’s downwash airflow and the external wind was an important factor on spray drift; Buffer zone of UAV aerial spraying operation in vineyards should be set at at least 15 m; The lower the canopy deposition rate (P 0), the larger the average average drift rate (AADR) and 90% cumulative drift distancex90% of the field drift test bench (P 0), the greater the ADX value (P 0) all indicated the higher spray drift risk, respectively; Both these sampling collectors and their evaluation index could assess the downwind drift characteristics effectively; the relationship between the UAV spray drift rate βdep% and the downwind distance x was described by the exponential function. The results of this study are expected to provide references and data supports for the R&D of UAV dedicated for orchard spraying, the formulation of standards on spray drift field measuring method for UAV orchard operations and the selection of aerial application working parameters in orchards.","PeriodicalId":35075,"journal":{"name":"农业工程学报","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"农业工程学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.11975/J.ISSN.1002-6819.2020.13.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 9
Abstract
In recent years, low-altitude and low-volume plant protection operations using unmanned aerial vehicle (UAV) sprayer developed rapidly in China with the advantages of high efficiency, labour saving, high safety, high terrain adaptability, high flexibility, water and chemicals saving, and high intelligence. With the UAV application technology in field crops is becoming more and more mature, aerial spraying operations in orchards are promising and in the ascendant, but a high risk of UAV spray drift is appearing due to high working height and fine droplets sprayed in slope orchards, highlighting the necessity of the study on the spray drift characteristics of UAV chemicals application for fruit trees. Therefore, based on previous research, a novel type of measuring method of spray drift for UAV chemicals application in orchard was proposed in this study and an artificial orchard test stand (vineyard) and 3 airborne drift frame collectors were designed and built, and a set of field drift test bench was firstly used to collect aerial spray drift droplets at different downwind distances, together with ground drift collectors and canopy deposition collectors. An airborne drift index (ADX) of UAV’s spray was initially applied for quantitative analysis to compare spray drift characteristics of different models of unmanned aircrafts and variable operation parameters. Fluorescence tracer Pyranine water solution was prepared at the concentration of 0.1% as the spray liquid. Four typical types of plant protection UAV (a single-rotor oil-powered helicopter, a 6-rotor motor drone and two models of 8-rotor motor drones) equipped with conventional hollow cone nozzle ‘TR 80-0067’ and air-induction anti-drift nozzle ‘IDK 120-015’were tested in the artificial vineyard, and results of canopy deposition distribution, ground sediment drift, near-ground drift, and airborne drift were obtained and analysed, and different sampling collectors for spray drift were evaluated and compared. The results showed that: Under the environmental conditions that the nominal crosswind speed was 2.4-3.6 m/s, the temperature was 29.8-34.3 ℃ and relative humidity was 10.7%-30.6%, at the flight height of 1.5 m (3.5 m from the ground) and the speed of 2.0 m/s the air-induction nozzle IDK can significantly reduce the level of downwind spray drift of UAV, optimize the uniformity of deposition distribution and increase the effective utilization rate of chemicals; There was no significant difference in the drift characteristics of the 4 types of unmanned aircraft, and the vortex generated by the combination of the rotor’s downwash airflow and the external wind was an important factor on spray drift; Buffer zone of UAV aerial spraying operation in vineyards should be set at at least 15 m; The lower the canopy deposition rate (P 0), the larger the average average drift rate (AADR) and 90% cumulative drift distancex90% of the field drift test bench (P 0), the greater the ADX value (P 0) all indicated the higher spray drift risk, respectively; Both these sampling collectors and their evaluation index could assess the downwind drift characteristics effectively; the relationship between the UAV spray drift rate βdep% and the downwind distance x was described by the exponential function. The results of this study are expected to provide references and data supports for the R&D of UAV dedicated for orchard spraying, the formulation of standards on spray drift field measuring method for UAV orchard operations and the selection of aerial application working parameters in orchards.
农业工程学报Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
4.10
自引率
0.00%
发文量
19555
期刊介绍:
TCSAE, the "Transactions of the Chinese Society of Agricultural Engineering," serves as a platform to introduce the latest scientific achievements and developing trends primarily in the field of Agricultural Engineering (AE) in China and, to some extent, from abroad. It encompasses eight disciplines, including Comprehensive Research, Key Technology, Soil and Water Engineering, Agricultural Equipment Engineering and Mechanization, Agricultural Aviation Engineering, Agricultural Information and Electrical Technologies, Agricultural Bioenvironmental and Energy Engineering, Land Consolidation and Rehabilitation Engineering, and Agricultural Produce Processing Engineering.