{"title":"An overview of the prediction methods for roll damping of ships","authors":"J. Falzarano, Abhilash Somayajula, R. Seah","doi":"10.12989/OSE.2015.5.2.055","DOIUrl":null,"url":null,"abstract":"Of all the six degrees of freedom, the roll motion of a ship is the most poorly understood and displays complicated phenomena. Due to the low potential wave damping at the natural frequency, the effective analysis of ship roll dynamics comes down to the accurate estimation of the viscous roll damping. This paper provides overview of the importance of roll damping and an extensive literature review of the various viscous roll damping prediction methods applied by researchers over the years. The paper also discusses in detail the current state of the art estimation of viscous roll damping for ship shaped structures. A computer code is developed based on this method and its results are compared with experimental data to demonstrate the accuracy of the method. While some of the key references describing this method are not available in English, some others have been found to contain typographic errors. The objective of this paper is to provide a comprehensive summary of the state of the art method in one place for future reference.","PeriodicalId":44219,"journal":{"name":"Ocean Systems Engineering-An International Journal","volume":"5 1","pages":"55-76"},"PeriodicalIF":0.7000,"publicationDate":"2015-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Systems Engineering-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12989/OSE.2015.5.2.055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 46
Abstract
Of all the six degrees of freedom, the roll motion of a ship is the most poorly understood and displays complicated phenomena. Due to the low potential wave damping at the natural frequency, the effective analysis of ship roll dynamics comes down to the accurate estimation of the viscous roll damping. This paper provides overview of the importance of roll damping and an extensive literature review of the various viscous roll damping prediction methods applied by researchers over the years. The paper also discusses in detail the current state of the art estimation of viscous roll damping for ship shaped structures. A computer code is developed based on this method and its results are compared with experimental data to demonstrate the accuracy of the method. While some of the key references describing this method are not available in English, some others have been found to contain typographic errors. The objective of this paper is to provide a comprehensive summary of the state of the art method in one place for future reference.
期刊介绍:
The OCEAN SYSTEMS ENGINEERING focuses on the new research and development efforts to advance the understanding of sciences and technologies in ocean systems engineering. The main subject of the journal is the multi-disciplinary engineering of ocean systems. Areas covered by the journal include; * Undersea technologies: AUVs, submersible robot, manned/unmanned submersibles, remotely operated underwater vehicle, sensors, instrumentation, measurement, and ocean observing systems; * Ocean systems technologies: ocean structures and structural systems, design and production, ocean process and plant, fatigue, fracture, reliability and risk analysis, dynamics of ocean structure system, probabilistic dynamics analysis, fluid-structure interaction, ship motion and mooring system, and port engineering; * Ocean hydrodynamics and ocean renewable energy, wave mechanics, buoyancy and stability, sloshing, slamming, and seakeeping; * Multi-physics based engineering analysis, design and testing: underwater explosions and their effects on ocean vehicle systems, equipments, and surface ships, survivability and vulnerability, shock, impact and vibration; * Modeling and simulations; * Underwater acoustics technologies.