An alternative portable dynamic positioning system on a barge in short-crested waves using the fuzzy control

IF 0.9 Q4 ENGINEERING, OCEAN Ocean Systems Engineering-An International Journal Pub Date : 2015-09-25 DOI:10.12989/OSE.2015.5.3.199
M. Fang, Z. Lee
{"title":"An alternative portable dynamic positioning system on a barge in short-crested waves using the fuzzy control","authors":"M. Fang, Z. Lee","doi":"10.12989/OSE.2015.5.3.199","DOIUrl":null,"url":null,"abstract":"The paper described the nonlinear dynamic motion behavior of a barge equipped with the portable outboard Dynamic Positioning (DP) control system in short-crested waves. The DP system based on the fuzzy theory is applied to control the thrusters to optimally adjust the ship position and heading in waves. In addition to the short-crested waves, the current, wind and nonlinear drifting force are also included in the calculations. The time domain simulations for the six degrees of freedom motions of the barge with the DP system are solved by the 4 th order Runge-Kutta method. The results show that the position and heading deviations are limited within acceptable ranges based on the present control method. When the dynamic positioning missions are needed, the technique of the alternative portable DP system developed here can serve as a practical tool to assist those ships without equipping with the DP facility.","PeriodicalId":44219,"journal":{"name":"Ocean Systems Engineering-An International Journal","volume":"5 1","pages":"199-220"},"PeriodicalIF":0.9000,"publicationDate":"2015-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Systems Engineering-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12989/OSE.2015.5.3.199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0

Abstract

The paper described the nonlinear dynamic motion behavior of a barge equipped with the portable outboard Dynamic Positioning (DP) control system in short-crested waves. The DP system based on the fuzzy theory is applied to control the thrusters to optimally adjust the ship position and heading in waves. In addition to the short-crested waves, the current, wind and nonlinear drifting force are also included in the calculations. The time domain simulations for the six degrees of freedom motions of the barge with the DP system are solved by the 4 th order Runge-Kutta method. The results show that the position and heading deviations are limited within acceptable ranges based on the present control method. When the dynamic positioning missions are needed, the technique of the alternative portable DP system developed here can serve as a practical tool to assist those ships without equipping with the DP facility.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于模糊控制的短波峰条件下驳船动态定位系统
本文研究了装有便携式舷外动力定位控制系统的驳船在短波峰条件下的非线性动力运动特性。采用基于模糊理论的定向控制系统对推进器进行控制,以实现船舶在波浪中位置和航向的最优调整。计算中除考虑短峰波外,还考虑了水流、风和非线性漂移力。利用四阶龙格-库塔法求解了该系统对驳船六自由度运动的时域仿真。结果表明,基于该控制方法,定位和航向偏差均被控制在可接受的范围内。当需要进行动态定位任务时,本文所开发的便携式动态定位系统技术可以作为一种实用的工具来辅助那些没有动态定位设备的船舶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
22.20%
发文量
0
期刊介绍: The OCEAN SYSTEMS ENGINEERING focuses on the new research and development efforts to advance the understanding of sciences and technologies in ocean systems engineering. The main subject of the journal is the multi-disciplinary engineering of ocean systems. Areas covered by the journal include; * Undersea technologies: AUVs, submersible robot, manned/unmanned submersibles, remotely operated underwater vehicle, sensors, instrumentation, measurement, and ocean observing systems; * Ocean systems technologies: ocean structures and structural systems, design and production, ocean process and plant, fatigue, fracture, reliability and risk analysis, dynamics of ocean structure system, probabilistic dynamics analysis, fluid-structure interaction, ship motion and mooring system, and port engineering; * Ocean hydrodynamics and ocean renewable energy, wave mechanics, buoyancy and stability, sloshing, slamming, and seakeeping; * Multi-physics based engineering analysis, design and testing: underwater explosions and their effects on ocean vehicle systems, equipments, and surface ships, survivability and vulnerability, shock, impact and vibration; * Modeling and simulations; * Underwater acoustics technologies.
期刊最新文献
A time-domain method for analyzing the ship roll stabilization based on active fin control Performance evaluation of a seawater exchange breakwater with Helmholtz resonator using OpenFOAM Wheel over point mathematical model Assessment of global wave forces and moments on porous vertical barriers in random wave fields Optimum design of miniature platforms for marginal fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1