{"title":"A hybrid method for predicting the dynamic response of free-span submarine pipelines","authors":"Tongtong Li, Menglan Duan, W. Liang, C. An","doi":"10.12989/OSE.2016.6.4.363","DOIUrl":null,"url":null,"abstract":". Large numbers of submarine pipelines are laid as the world now is attaching great importance to offshore oil exploitation. Free spanning of submarine pipelines may be caused by seabed unevenness, change of topology, artificial supports, etc. By combining Iwan’s wake oscillator model with the differential equation which describes the vibration behavior of free-span submarine pipelines, the pipe-fluid coupling equation is developed and solved in order to study the effect of both internal and external fluid on the vibration behavior of free-span submarine pipelines. Through generalized integral transform technique (GITT), the governing equation describing the transverse displacement is transformed into a system of second-order ordinary differential equations (ODEs) in temporal variable, eliminating the spatial variable. The MATHEMATICA built-in function NDSolve is then used to numerically solve the transformed ODE system. The good convergence of the eigenfunction expansions proved that this method is applicable for predicting the dynamic response of free-span pipelines subjected to both internal flow and external current.","PeriodicalId":44219,"journal":{"name":"Ocean Systems Engineering-An International Journal","volume":"6 1","pages":"363-375"},"PeriodicalIF":0.7000,"publicationDate":"2016-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Systems Engineering-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12989/OSE.2016.6.4.363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 3
Abstract
. Large numbers of submarine pipelines are laid as the world now is attaching great importance to offshore oil exploitation. Free spanning of submarine pipelines may be caused by seabed unevenness, change of topology, artificial supports, etc. By combining Iwan’s wake oscillator model with the differential equation which describes the vibration behavior of free-span submarine pipelines, the pipe-fluid coupling equation is developed and solved in order to study the effect of both internal and external fluid on the vibration behavior of free-span submarine pipelines. Through generalized integral transform technique (GITT), the governing equation describing the transverse displacement is transformed into a system of second-order ordinary differential equations (ODEs) in temporal variable, eliminating the spatial variable. The MATHEMATICA built-in function NDSolve is then used to numerically solve the transformed ODE system. The good convergence of the eigenfunction expansions proved that this method is applicable for predicting the dynamic response of free-span pipelines subjected to both internal flow and external current.
期刊介绍:
The OCEAN SYSTEMS ENGINEERING focuses on the new research and development efforts to advance the understanding of sciences and technologies in ocean systems engineering. The main subject of the journal is the multi-disciplinary engineering of ocean systems. Areas covered by the journal include; * Undersea technologies: AUVs, submersible robot, manned/unmanned submersibles, remotely operated underwater vehicle, sensors, instrumentation, measurement, and ocean observing systems; * Ocean systems technologies: ocean structures and structural systems, design and production, ocean process and plant, fatigue, fracture, reliability and risk analysis, dynamics of ocean structure system, probabilistic dynamics analysis, fluid-structure interaction, ship motion and mooring system, and port engineering; * Ocean hydrodynamics and ocean renewable energy, wave mechanics, buoyancy and stability, sloshing, slamming, and seakeeping; * Multi-physics based engineering analysis, design and testing: underwater explosions and their effects on ocean vehicle systems, equipments, and surface ships, survivability and vulnerability, shock, impact and vibration; * Modeling and simulations; * Underwater acoustics technologies.