Assessment of the PCR technique for identification of Bursaphelenchus mucronatus Mamiya & Enda 1979, B. xylophilus Steiner & Buhrer 1934 (Nickle 1970) and B. fraudulentus Rühm 1956 (Nematoda, Aphelenchoididae) in crude extract of nematodes isolated from wood
{"title":"Assessment of the PCR technique for identification of Bursaphelenchus mucronatus Mamiya & Enda 1979, B. xylophilus Steiner & Buhrer 1934 (Nickle 1970) and B. fraudulentus Rühm 1956 (Nematoda, Aphelenchoididae) in crude extract of nematodes isolated from wood","authors":"","doi":"10.14199/ppp-2021-037","DOIUrl":null,"url":null,"abstract":"The pine wood nematode, Bursaphelenchus xylophilus Steiner & Buhrer 1934 (Nickle 1970) is the major causative agent of the pine wilt disease which has become devastating to Asian and European coniferous forests. These regions are also naturally occupied by two other native but nonpathogenic species, i.e. B. mucronatus Mamiya & Enda 1979 and B. fraudulentus Rühm 1956 which are closely related to the invasive B. xylophilus. Moreover, all these three species can colonize pine trees, and potentially be extracted from the same wood samples. Due to the cosmopolitan character and wide genetic variation within- and between existing populations the taxonomic distinction of these species based exclusively on their morphology is difficult or, almost impossible. The present quarantine regulations related to B. xylophilus require the most credible and simple methods which could allow for a possibly earliest detection and precise identification of this species in wood shipments and conifer forests stands. The main objectives of the presently reported research were to simplify the presently available procedures for possibly fast and precise detection and identification of B. xylophilus examined in the background of the remaining Bursaphelenchus species of the xylophilus group and other bacterio- and mycetophagous nematodes naturally present in the pine wood samples. The developed method is based on a direct examination of the crude nematode extract from wood samples and subsequent use of PCR technique with earlier designed specific reaction starters amplifying ITS1–28S rDNA regions.","PeriodicalId":20625,"journal":{"name":"Progress in Plant Protection","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Plant Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14199/ppp-2021-037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
The pine wood nematode, Bursaphelenchus xylophilus Steiner & Buhrer 1934 (Nickle 1970) is the major causative agent of the pine wilt disease which has become devastating to Asian and European coniferous forests. These regions are also naturally occupied by two other native but nonpathogenic species, i.e. B. mucronatus Mamiya & Enda 1979 and B. fraudulentus Rühm 1956 which are closely related to the invasive B. xylophilus. Moreover, all these three species can colonize pine trees, and potentially be extracted from the same wood samples. Due to the cosmopolitan character and wide genetic variation within- and between existing populations the taxonomic distinction of these species based exclusively on their morphology is difficult or, almost impossible. The present quarantine regulations related to B. xylophilus require the most credible and simple methods which could allow for a possibly earliest detection and precise identification of this species in wood shipments and conifer forests stands. The main objectives of the presently reported research were to simplify the presently available procedures for possibly fast and precise detection and identification of B. xylophilus examined in the background of the remaining Bursaphelenchus species of the xylophilus group and other bacterio- and mycetophagous nematodes naturally present in the pine wood samples. The developed method is based on a direct examination of the crude nematode extract from wood samples and subsequent use of PCR technique with earlier designed specific reaction starters amplifying ITS1–28S rDNA regions.