Modeling and mapping forest fire risk in the region of Aures (Algeria)

IF 0.5 Q3 GEOGRAPHY Geoadria Pub Date : 2020-04-15 DOI:10.15291/geoadria.2846
S. Rahmani, Hassen Benmassoud
{"title":"Modeling and mapping forest fire risk in the region of Aures (Algeria)","authors":"S. Rahmani, Hassen Benmassoud","doi":"10.15291/geoadria.2846","DOIUrl":null,"url":null,"abstract":"The objective of this study is to modeling and mapping the Forest fire risk in the region of Aures situated in Northeast of Algeria, through the application of multi-criteria analysis methods to integrate geographic information systems (GIS) and remote sensing. The methodology is based on a weighted linear combination of three parameters that influence the initiation and propagation of a forest fire. These are vegetation, topography and anthropogenic index. The result is a vulnerability map classified into four classes according to pixel values. very high risk class forms 18,28% of the study area, high risk class forms 42,42%, moderate risk class forms 5,24% and 34,05% of the area is low risk.","PeriodicalId":42640,"journal":{"name":"Geoadria","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2020-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15291/geoadria.2846","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoadria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15291/geoadria.2846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 3

Abstract

The objective of this study is to modeling and mapping the Forest fire risk in the region of Aures situated in Northeast of Algeria, through the application of multi-criteria analysis methods to integrate geographic information systems (GIS) and remote sensing. The methodology is based on a weighted linear combination of three parameters that influence the initiation and propagation of a forest fire. These are vegetation, topography and anthropogenic index. The result is a vulnerability map classified into four classes according to pixel values. very high risk class forms 18,28% of the study area, high risk class forms 42,42%, moderate risk class forms 5,24% and 34,05% of the area is low risk.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阿尔及利亚奥雷什地区森林火灾风险建模和制图
本研究的目的是通过应用多标准分析方法,将地理信息系统(GIS)和遥感相结合,对阿尔及利亚东北部奥雷雷斯地区的森林火灾风险进行建模和制图。该方法基于影响森林火灾发生和蔓延的三个参数的加权线性组合。它们是植被、地形和人为指数。结果是一个漏洞图,根据像素值分为四类。极高风险区占研究区域的18.28%,高风险区占研究区域的42.42%,中等风险区占研究区域的5.24%,低风险区占研究区域的34.05%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geoadria
Geoadria GEOGRAPHY-
CiteScore
0.80
自引率
0.00%
发文量
8
审稿时长
22 weeks
期刊最新文献
Materijalna baština antifašizma u južnoj Istri kao temelj razvoja memorijalnog turizma Trendovi kretanja mortaliteta u Hrvatskoj u prva dva desetljeća 21. stoljeća Prepoznatljivost i potencijal tradicijskih i umjetničkih obrta kao baštine Zagreba Applying two methodologies of an integrated coastal vulnerability index (ICVI) to future sea-level rise Patterns of international migration among rular households in Edo state, Nigeria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1