{"title":"The effects of etching time and hydrogen peroxide concentration on the ZnO/glass substrate","authors":"S. Alias, M. Z. Mohd Yusoff, M. Yahya","doi":"10.15251/cl.2023.204.293","DOIUrl":null,"url":null,"abstract":"The purpose of the study is to determine the best technique for etching ZnO thin films. ZnO is deposited on the glass substrate using a radio frequency sputtering equipment. To etch the ZnO thin film, hydrogen peroxide (H2O2) concentrations of 10%, 20%, and 30% are utilised, with etching times of 30 and 60 seconds. The optical band gap is lowered after a specific quantity of etching, which shows that the film's crystallinity quality has improved. The impact of various ZnO thicknesses on the sample's optical properties is investigated using OPAL 2 simulator. In comparison to other ZnO layers of varied thickness, the OPAL 2 simulation shows that the 400 nm ZnO layer has the lowest transmission in the UV wavelength range.","PeriodicalId":9710,"journal":{"name":"Chalcogenide Letters","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chalcogenide Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/cl.2023.204.293","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of the study is to determine the best technique for etching ZnO thin films. ZnO is deposited on the glass substrate using a radio frequency sputtering equipment. To etch the ZnO thin film, hydrogen peroxide (H2O2) concentrations of 10%, 20%, and 30% are utilised, with etching times of 30 and 60 seconds. The optical band gap is lowered after a specific quantity of etching, which shows that the film's crystallinity quality has improved. The impact of various ZnO thicknesses on the sample's optical properties is investigated using OPAL 2 simulator. In comparison to other ZnO layers of varied thickness, the OPAL 2 simulation shows that the 400 nm ZnO layer has the lowest transmission in the UV wavelength range.
期刊介绍:
Chalcogenide Letters (CHL) has the aim to publish rapidly papers in chalcogenide field of research and
appears with twelve issues per year. The journal is open to letters, short communications and breakings news
inserted as Short Notes, in the field of chalcogenide materials either amorphous or crystalline. Short papers in
structure, properties and applications, as well as those covering special properties in nano-structured
chalcogenides are admitted.