{"title":"Support Vector Machine-based Soft Sensors in the Isomerisation Process","authors":"S. Herceg, Z. U. Andrijic, N. Bolf","doi":"10.15255/CABEQ.2020.1825","DOIUrl":null,"url":null,"abstract":"This paper presents the development of soft sensor empirical models using support vector machine (SVM) for the continual assessment of 2,3-dimethylbutane and 2-methylpentane mole percentage as important product quality indicators in the refinery isomerisation process. During the model development, critical steps were taken, including selection and pre-processing of the industrial process data, which are broadly discussed in this paper. The SVM model results were compared with dynamic linear output error model and nonlinear Hammerstein-Wiener model. Evaluation of the developed models on independent data sets showed their reliability in the assessment of the component contents. The soft sensors are to be embedded into the process control system, and serve primarily as a replacement during the process analysersb failure and service periods.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":"34 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biochemical Engineering Quarterly","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.15255/CABEQ.2020.1825","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
This paper presents the development of soft sensor empirical models using support vector machine (SVM) for the continual assessment of 2,3-dimethylbutane and 2-methylpentane mole percentage as important product quality indicators in the refinery isomerisation process. During the model development, critical steps were taken, including selection and pre-processing of the industrial process data, which are broadly discussed in this paper. The SVM model results were compared with dynamic linear output error model and nonlinear Hammerstein-Wiener model. Evaluation of the developed models on independent data sets showed their reliability in the assessment of the component contents. The soft sensors are to be embedded into the process control system, and serve primarily as a replacement during the process analysersb failure and service periods.
期刊介绍:
The journal provides an international forum for presentation of original papers, reviews and discussions on the latest developments in chemical and biochemical engineering. The scope of the journal is wide and no limitation except relevance to chemical and biochemical engineering is required.
The criteria for the acceptance of papers are originality, quality of work and clarity of style. All papers are subject to reviewing by at least two international experts (blind peer review).
The language of the journal is English. Final versions of the manuscripts are subject to metric (SI units and IUPAC recommendations) and English language reviewing.
Editor and Editorial board make the final decision about acceptance of a manuscript.
Page charges are excluded.