A. Zahir, H. Aslam, Umair Aslam, A. Abdullah, Rizwan Ali, M. M. Bello
{"title":"Paspalum notatum Grass-waste-based Adsorbent for Rhodamine B Removal from Polluted Water","authors":"A. Zahir, H. Aslam, Umair Aslam, A. Abdullah, Rizwan Ali, M. M. Bello","doi":"10.15255/cabeq.2020.1830","DOIUrl":null,"url":null,"abstract":"The potential of Paspalum notatum grass waste to adsorb Rhodamine B dye from aqueous phase is reported in this research. The grass waste was activated and characterized through various techniques to analyze the chemical (FTIR), morphological (SEMEDX), and thermal (TGA) changes incorporated through the activation process. The pollutant removal efficiency of the raw and modified adsorbents was studied by varying different process parameters in a batch process. The maximum capacity of adsorption which was observed for grass waste and activated grass waste was 54 mg g–1 and 72.4 mg g–1 respectively. Among the various kinetic models, the pseudo-second order model gives the best regression results. However, the intraparticle diffusion-adsorption model showed that the diffusion within pores controlled the adsorption rate. Thermodynamic analysis of this process revealed that Rhodamine B adsorption was endothermic and spontaneous in nature. The results of this study show that grass waste has the potential to be used as an adsorbent for the treatment of colored water.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":"34 1","pages":"93-104"},"PeriodicalIF":1.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15255/cabeq.2020.1830","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biochemical Engineering Quarterly","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.15255/cabeq.2020.1830","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 12
Abstract
The potential of Paspalum notatum grass waste to adsorb Rhodamine B dye from aqueous phase is reported in this research. The grass waste was activated and characterized through various techniques to analyze the chemical (FTIR), morphological (SEMEDX), and thermal (TGA) changes incorporated through the activation process. The pollutant removal efficiency of the raw and modified adsorbents was studied by varying different process parameters in a batch process. The maximum capacity of adsorption which was observed for grass waste and activated grass waste was 54 mg g–1 and 72.4 mg g–1 respectively. Among the various kinetic models, the pseudo-second order model gives the best regression results. However, the intraparticle diffusion-adsorption model showed that the diffusion within pores controlled the adsorption rate. Thermodynamic analysis of this process revealed that Rhodamine B adsorption was endothermic and spontaneous in nature. The results of this study show that grass waste has the potential to be used as an adsorbent for the treatment of colored water.
期刊介绍:
The journal provides an international forum for presentation of original papers, reviews and discussions on the latest developments in chemical and biochemical engineering. The scope of the journal is wide and no limitation except relevance to chemical and biochemical engineering is required.
The criteria for the acceptance of papers are originality, quality of work and clarity of style. All papers are subject to reviewing by at least two international experts (blind peer review).
The language of the journal is English. Final versions of the manuscripts are subject to metric (SI units and IUPAC recommendations) and English language reviewing.
Editor and Editorial board make the final decision about acceptance of a manuscript.
Page charges are excluded.