Understanding Caking Phenomena in Industrial Fertilizers

IF 1.6 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Chemical and Biochemical Engineering Quarterly Pub Date : 2021-01-01 DOI:10.15255/CABEQ.2020.1866
Aysu Ulusal, Cemre Avşar
{"title":"Understanding Caking Phenomena in Industrial Fertilizers","authors":"Aysu Ulusal, Cemre Avşar","doi":"10.15255/CABEQ.2020.1866","DOIUrl":null,"url":null,"abstract":"One of the most important problems of the fertilizer industry is that fertilizers show caking tendency during transportation and storage. Caking occurs as a result of interaction at the contact points formed between solid fertilizer particles. These interactions, also called contact mechanisms, are activated by a number of properties that fertilizers have and by environmental conditions. Prevention of caking mechanism is a substantial research subject that directly affects the quality and financial value of the final product and ensures its applicability. Fertilizer in good quality can provide ease in agricultural applications, and directly affect plant nutrition and crop productivity. At this point, there are various promoter practices for obtaining the free-flowing property in fertilizers that can be maintained or suggested during or after production, both in industry and in R&D studies. In order to develop new process control points in the industry, it is important to understand the factors that cause caking and the mechanism of physicochemical interactions that progress depending on these factors. In addition, it is essential to improve the storage conditions of the fertilizer, as well as to maintain its quality until end-use. This paper focuses on the caking behavior of fertilizers in detail, giving brief information about the prevention of caking and various types of anticaking agents.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":"34 1","pages":"209-222"},"PeriodicalIF":1.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biochemical Engineering Quarterly","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.15255/CABEQ.2020.1866","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 4

Abstract

One of the most important problems of the fertilizer industry is that fertilizers show caking tendency during transportation and storage. Caking occurs as a result of interaction at the contact points formed between solid fertilizer particles. These interactions, also called contact mechanisms, are activated by a number of properties that fertilizers have and by environmental conditions. Prevention of caking mechanism is a substantial research subject that directly affects the quality and financial value of the final product and ensures its applicability. Fertilizer in good quality can provide ease in agricultural applications, and directly affect plant nutrition and crop productivity. At this point, there are various promoter practices for obtaining the free-flowing property in fertilizers that can be maintained or suggested during or after production, both in industry and in R&D studies. In order to develop new process control points in the industry, it is important to understand the factors that cause caking and the mechanism of physicochemical interactions that progress depending on these factors. In addition, it is essential to improve the storage conditions of the fertilizer, as well as to maintain its quality until end-use. This paper focuses on the caking behavior of fertilizers in detail, giving brief information about the prevention of caking and various types of anticaking agents.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
了解工业肥料中的结块现象
肥料在运输和储存过程中容易结块是肥料工业面临的一个重要问题。结块是固体肥料颗粒之间在接触点上相互作用的结果。这些相互作用,也称为接触机制,是由肥料的一些特性和环境条件激活的。防止结块机理是一个重要的研究课题,直接影响到最终产品的质量和经济价值,并保证其适用性。优质肥料可以为农业施用提供便利,并直接影响植物营养和作物生产力。在这一点上,在工业和研发研究中,有各种促进剂用于获得肥料的自由流动特性,这些特性可以在生产期间或生产后保持或建议。为了在工业中开发新的过程控制点,了解导致结块的因素以及依赖这些因素的物理化学相互作用机制非常重要。此外,必须改善肥料的储存条件,并在最终使用前保持其质量。本文详细介绍了肥料的结块行为,简要介绍了防止结块的方法和各种类型的防结块剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical and Biochemical Engineering Quarterly
Chemical and Biochemical Engineering Quarterly 工程技术-工程:化工
CiteScore
2.70
自引率
6.70%
发文量
23
审稿时长
>12 weeks
期刊介绍: The journal provides an international forum for presentation of original papers, reviews and discussions on the latest developments in chemical and biochemical engineering. The scope of the journal is wide and no limitation except relevance to chemical and biochemical engineering is required. The criteria for the acceptance of papers are originality, quality of work and clarity of style. All papers are subject to reviewing by at least two international experts (blind peer review). The language of the journal is English. Final versions of the manuscripts are subject to metric (SI units and IUPAC recommendations) and English language reviewing. Editor and Editorial board make the final decision about acceptance of a manuscript. Page charges are excluded.
期刊最新文献
Influence of Reaction Parameters and Feedstock Type on the Synthesis of Fatty Acid Propyl, Butyl, Isobutyl, Pentyl, and Isopentyl Esters Effect of Silver Addition on Cu-based Shape Memory Alloys Aquatic Toxicity of Polyethylene and Microcrystalline Cellulose Microbeads Used as Abrasives in Cosmetics Lauric Acid-based Polyol Esters as Potential Bio-based Lubricants for Diesel Fuel Amoxicillin Biodegradation with Bacillus subtilis and Pseudomonas aeruginosa: Characterization of Relevant Degradation Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1