ARTIFICIAL NEURAL NETWORKS (ANN) FOR HEIGHT ESTIMATION IN A MIXED-SPECIES PLANTATION OF Eucalyptus globulus LABILL AND Acacia mearnsii DE WILD

IF 0.6 4区 农林科学 Q4 FORESTRY Revista Arvore Pub Date : 2021-01-01 DOI:10.1590/1806-908820210000012
Gustavo Martins Soares, L. Silva, A. Higa, A. Simon, J. B. D. S. José
{"title":"ARTIFICIAL NEURAL NETWORKS (ANN) FOR HEIGHT ESTIMATION IN A MIXED-SPECIES PLANTATION OF Eucalyptus globulus LABILL AND Acacia mearnsii DE WILD","authors":"Gustavo Martins Soares, L. Silva, A. Higa, A. Simon, J. B. D. S. José","doi":"10.1590/1806-908820210000012","DOIUrl":null,"url":null,"abstract":"ABSTRACT The objective of this study is to evaluate the fit of Artificial Neural Networks (ANN) for height estimation and evaluation of the effects of consortium in a mixed-species plantation of Eucalyptus globulus (E) and Acacia mearnsii (A). The experiment was installed in 2005, on two farms in the municipality of Piratini - RS, where was planted the species Eucalyptus globulus (E) and Acacia mearnsii (A), in monoculture and mixed in simple lines (50%E:50%A - SL), and double lines (50%E:50%A - DL). The training and evaluation of the networks were made in R-project with the package neuralnet. All ANNs, from the simplest to the most complex, showed high values for Rŷy and low for Syx, BIAS and RMSE, with superior results in ANN 3, 4, and 6, which demonstrates that the information of DBHmin, DBHmean, and DBHmax were important stand attributes. Furthermore, the ANNs were able to capture the different growth patterns shown by the species in the different forms of consortiums, therefore is indicated for the height estimation in monocultures and mixed plantations of Eucalyptus globulus and Acacia mearnsii, and only one ANN would be necessary to represent the entire population.","PeriodicalId":21214,"journal":{"name":"Revista Arvore","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Arvore","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1590/1806-908820210000012","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT The objective of this study is to evaluate the fit of Artificial Neural Networks (ANN) for height estimation and evaluation of the effects of consortium in a mixed-species plantation of Eucalyptus globulus (E) and Acacia mearnsii (A). The experiment was installed in 2005, on two farms in the municipality of Piratini - RS, where was planted the species Eucalyptus globulus (E) and Acacia mearnsii (A), in monoculture and mixed in simple lines (50%E:50%A - SL), and double lines (50%E:50%A - DL). The training and evaluation of the networks were made in R-project with the package neuralnet. All ANNs, from the simplest to the most complex, showed high values for Rŷy and low for Syx, BIAS and RMSE, with superior results in ANN 3, 4, and 6, which demonstrates that the information of DBHmin, DBHmean, and DBHmax were important stand attributes. Furthermore, the ANNs were able to capture the different growth patterns shown by the species in the different forms of consortiums, therefore is indicated for the height estimation in monocultures and mixed plantations of Eucalyptus globulus and Acacia mearnsii, and only one ANN would be necessary to represent the entire population.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络的蓝桉与野生金合欢混种人工林高度估算
摘要本研究的目的是评估人工神经网络(ANN)在蓝桉(E)和金合欢(a)混合种人工林中高度估计和评价财团效应的拟合性。该实验于2005年在皮拉蒂尼- RS市的两个农场进行,其中种植了蓝桉(E)和金合欢(a),分别以单栽和单株混合种植(50%E:50%A - SL)。和双线(50%E:50%A - DL)。在R-project中使用软件包neuralnet对网络进行训练和评估。从最简单到最复杂的神经网络,Rŷy的值都很高,Syx、BIAS和RMSE的值都很低,其中神经网络3、4和6的结果都比较好,说明DBHmin、DBHmean和DBHmax是重要的林分属性。此外,人工神经网络能够捕捉到不同群落形式下物种的不同生长模式,因此可以用于单栽和混交林的高度估计,并且只需要一个人工神经网络即可代表整个种群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Revista Arvore
Revista Arvore FORESTRY-
CiteScore
1.00
自引率
0.00%
发文量
32
审稿时长
4-8 weeks
期刊介绍: A Revista Árvore é um veículo de comunicação científica da Sociedade de Investigações Florestais – SIF. O jornal é de acesso gratuito, revisado por pares, que publica bimestralmente trabalhos científicos originais no campo da Ciência Florestal. As áreas temáticas para publicação são: Ambiência e Conservação da Natureza, Manejo Florestal, Silvicultura e Tecnologia da Madeira e Utilização de Produtos Florestais. A política editorial visa manter alta conduta ética em relação à publicação e aos seus funcionários, rigor na qualidade dos artigos científicos, seleção de revisores qualificados, respeito profissional aos autores e processo de tomada de decisão imparcial. A Revista Árvore publica artigos apenas em inglês. Artigos de revisão podem ser publicados se houver uma discussão relevante resumindo o estado da arte sobre o assunto. A revisão estrita da literatura não é aceita.
期刊最新文献
MIXED MODELS FOR NUTRIENTS PREDICTION IN SPECIES OF THE BRAZILIAN CAATINGA BIOME EMERGENCE, INITIAL GROWTH, AND SEEDLING QUALITY OF Eremanthus incanus: SUBSIDIES FOR GENETIC BREEDING AND CONSERVATION VEGETATIVE RESCUE AND PROPAGATION OF NATIVE Ilex paraguariensis POPULATIONS IN SANTA CATARINA STATE, BRAZIL EFFECT OF pH ON THE ANTIBACTERIAL AND ANTIFUNGAL ACTIVITY OF WOOD VINEGAR (PYROLIGNEOUS EXTRACT) FROM EUCALYPTUS CHARACTERISTIC STRENGTHS IN THE COMPRESSION AND IN THE STATIC BENDING AS PARAMETERS TO ESTIMATE CHARACTERISTIC SHEAR STRENGTH FOR TIMBER DESIGN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1