{"title":"The use of high-throughput phenotyping in genomic selection context","authors":"Reyna Persa, P. C. D. O. Ribeiro, D. Jarquín","doi":"10.1590/1984-70332021v21sa19","DOIUrl":null,"url":null,"abstract":"One of the biggest challenges that breeders face is the development of improved cultivars in changing climate conditions posing extra challenges to their labor. On the other hand, the availability of data generated with automated systems offers an opportunity to characterize genetically and phenotypically genotypes with high detail. Modern sequencing technologies delivering hundreds of thousands of molecular makers, offered the opportunity of selecting genotypes without the need of observing these in fields and this methodology was coined as Genomic Selection (GS). More recently, sophisticated automated phenotyping platforms depending on sensors able to measure a large number of plant features were also developed and have shown potential in plant breeding applications. These modern phenotyping systems that attempt to efficiently deliver phenotypic information on secondary traits are also know as high-throughput phenotyping platforms (HTPPs). The integration of HTPP with GS models opened a new research front to improve the efficiency of the selection methods based on genomic data only, specially of those traits depending on a large number of genes with small effects (complex traits). However, there are still remaining some issues to solve for developing a robust methodology able to combine in an efficient and informed way these two high dimensional data types. In this document, we provide an overview of the statistical analysis of the data derived of the HTTPs for improving the predictive ability of conventional GS models. First, we provide a brief introduction showing the utility of genomic data in plant breeding applications. Then, we provide an overview of the field-based HTPPs considering the light detection and ranging, and the unmanned aerial vehicles and how the image data derived from these platforms can be used to accelerate genetic gains. After that, we discuss about the extension of the conventional GS models to allow the incorporation of data derived of the HTPPs as main effects and also in interaction with environmental factors. The availability of several sources of information have opened a venue to investigate besides the univariate or single trait model, models based on multiple traits and also models that consider multiple time measures allowing longitudinal GS studies. Finally, we provide some conclusions as well as we mention some the current issues that do not allow to fully exploit the potential of HTTPs in plant breeding applications.","PeriodicalId":10763,"journal":{"name":"Crop Breeding and Applied Biotechnology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Breeding and Applied Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1590/1984-70332021v21sa19","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 3
Abstract
One of the biggest challenges that breeders face is the development of improved cultivars in changing climate conditions posing extra challenges to their labor. On the other hand, the availability of data generated with automated systems offers an opportunity to characterize genetically and phenotypically genotypes with high detail. Modern sequencing technologies delivering hundreds of thousands of molecular makers, offered the opportunity of selecting genotypes without the need of observing these in fields and this methodology was coined as Genomic Selection (GS). More recently, sophisticated automated phenotyping platforms depending on sensors able to measure a large number of plant features were also developed and have shown potential in plant breeding applications. These modern phenotyping systems that attempt to efficiently deliver phenotypic information on secondary traits are also know as high-throughput phenotyping platforms (HTPPs). The integration of HTPP with GS models opened a new research front to improve the efficiency of the selection methods based on genomic data only, specially of those traits depending on a large number of genes with small effects (complex traits). However, there are still remaining some issues to solve for developing a robust methodology able to combine in an efficient and informed way these two high dimensional data types. In this document, we provide an overview of the statistical analysis of the data derived of the HTTPs for improving the predictive ability of conventional GS models. First, we provide a brief introduction showing the utility of genomic data in plant breeding applications. Then, we provide an overview of the field-based HTPPs considering the light detection and ranging, and the unmanned aerial vehicles and how the image data derived from these platforms can be used to accelerate genetic gains. After that, we discuss about the extension of the conventional GS models to allow the incorporation of data derived of the HTPPs as main effects and also in interaction with environmental factors. The availability of several sources of information have opened a venue to investigate besides the univariate or single trait model, models based on multiple traits and also models that consider multiple time measures allowing longitudinal GS studies. Finally, we provide some conclusions as well as we mention some the current issues that do not allow to fully exploit the potential of HTTPs in plant breeding applications.
期刊介绍:
The CBAB – CROP BREEDING AND APPLIED BIOTECHNOLOGY (ISSN 1984-7033) – is the official quarterly journal of the Brazilian Society of Plant Breeding, abbreviated CROP BREED APPL BIOTECHNOL.
It publishes original scientific articles, which contribute to the scientific and technological development of plant breeding and agriculture. Articles should be to do with basic and applied research on improvement of perennial and annual plants, within the fields of genetics, conservation of germplasm, biotechnology, genomics, cytogenetics, experimental statistics, seeds, food quality, biotic and abiotic stress, and correlated areas. The article must be unpublished. Simultaneous submitting to another periodical is ruled out. Authors are held solely responsible for the opinions and ideas expressed, which do not necessarily reflect the view of the Editorial board. However, the Editorial board reserves the right to suggest or ask for any modifications required. The journal adopts the Ithenticate software for identification of plagiarism. Complete or partial reproduction of articles is permitted, provided the source is cited. All content of the journal, except where identified, is licensed under a Creative Commons attribution-type BY. All articles are published free of charge. This is an open access journal.