Modeling early stage bone regeneration with biomimetic electrospun fibrinogen nanofibers and adipose-derived mesenchymal stem cells

Michael P. Francis, Yas M. Moghaddam-White, Patrick C. Sachs, M. Beckman, Stephen M. Chen, G. Bowlin, L. Elmore, S. Holt
{"title":"Modeling early stage bone regeneration with biomimetic electrospun fibrinogen nanofibers and adipose-derived mesenchymal stem cells","authors":"Michael P. Francis, Yas M. Moghaddam-White, Patrick C. Sachs, M. Beckman, Stephen M. Chen, G. Bowlin, L. Elmore, S. Holt","doi":"10.1515/esp-2016-0002","DOIUrl":null,"url":null,"abstract":"Abstract The key events of the earliest stages of bone regeneration have been described in vivo although not yet modeled in an in vitro environment, where mechanistic cell-matrix-growth factor interactions can be more effectively studied. Here, we explore an early-stage bone regeneration model where the ability of electrospun fibrinogen (Fg) nanofibers to regulate osteoblastogenesis between distinct mesenchymal stem cells populations is assessed. Electrospun scaffolds of Fg, polydioxanone (PDO), and a Fg:PDO blend were seeded with adipose-derived mesenchymal stem cells (ASCs) and grown for 7-21 days in osteogenic differentiation media or control growth media. Scaffolds were analyzed weekly for histologic and molecular evidence of osteoblastogenesis. In response to osteogenic differentiation media, ASCs seeded on the Fg scaffolds exhibit elevated expression of multiple genes associated with osteoblastogenesis. Histologic stains and scanning electron microscopy demonstrate widespread mineralization within the scaffolds, as well as de novo type I collagen synthesis. Our data demonstrates that electrospun Fg nanofibers support ASC osteogenic differentiation, yet the scaffold itself does not appear to be osteoinductive. Together, ASCs and Fg recapitulate early stages of bone regeneration ex vivo and presents a prospective autologous therapeutic approach for bone repair.","PeriodicalId":92629,"journal":{"name":"Electrospinning","volume":"53 1","pages":"10 - 19"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/esp-2016-0002","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrospinning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/esp-2016-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract The key events of the earliest stages of bone regeneration have been described in vivo although not yet modeled in an in vitro environment, where mechanistic cell-matrix-growth factor interactions can be more effectively studied. Here, we explore an early-stage bone regeneration model where the ability of electrospun fibrinogen (Fg) nanofibers to regulate osteoblastogenesis between distinct mesenchymal stem cells populations is assessed. Electrospun scaffolds of Fg, polydioxanone (PDO), and a Fg:PDO blend were seeded with adipose-derived mesenchymal stem cells (ASCs) and grown for 7-21 days in osteogenic differentiation media or control growth media. Scaffolds were analyzed weekly for histologic and molecular evidence of osteoblastogenesis. In response to osteogenic differentiation media, ASCs seeded on the Fg scaffolds exhibit elevated expression of multiple genes associated with osteoblastogenesis. Histologic stains and scanning electron microscopy demonstrate widespread mineralization within the scaffolds, as well as de novo type I collagen synthesis. Our data demonstrates that electrospun Fg nanofibers support ASC osteogenic differentiation, yet the scaffold itself does not appear to be osteoinductive. Together, ASCs and Fg recapitulate early stages of bone regeneration ex vivo and presents a prospective autologous therapeutic approach for bone repair.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用仿生电纺丝纤维蛋白原纳米纤维和脂肪来源的间充质干细胞模拟早期骨再生
骨再生早期阶段的关键事件已经在体内描述,尽管尚未在体外环境中建模,在体外环境中可以更有效地研究细胞基质-生长因子相互作用的机制。在这里,我们探索了早期骨再生模型,其中评估了电纺纤维蛋白原(Fg)纳米纤维调节不同间充质干细胞群体之间成骨细胞发生的能力。将Fg、聚二氧环酮(PDO)和Fg:PDO混合物的电纺丝支架与脂肪来源的间充质干细胞(ASCs)相结合,在成骨分化培养基或对照生长培养基中培养7-21天。每周对支架进行成骨细胞发生的组织学和分子证据分析。在成骨分化培养基的作用下,植于Fg支架上的ASCs表现出与成骨细胞发生相关的多种基因的表达升高。组织学染色和扫描电镜显示支架内广泛的矿化,以及从头合成I型胶原蛋白。我们的数据表明,静电纺Fg纳米纤维支持ASC成骨分化,但支架本身似乎不具有成骨诱导作用。ASCs和Fg共同概括了体外骨再生的早期阶段,并为骨修复提供了一种前瞻性的自体治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fabrication and Bioapplications of Magnetically Modified Chitosan-based Electrospun Nanofibers Fabrication of radially aligned electrospun nanofibers in a three-dimensional conical shape Solvent retention in electrospun fibers affects scaffold mechanical properties. Decellularized extracellular matrices for tissue engineering applications Using Electrospun Scaffolds to Promote Macrophage Phenotypic Modulation and Support Wound Healing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1