Simulating Crack Propagation of a Selected Structural Component of the PZL-130 Orlik TC-II Aircrafts

Q4 Engineering Fatigue of Aircraft Structures Pub Date : 2014-06-01 DOI:10.1515/fas-2014-0013
Krzysztof Jankowski, P. Reymer
{"title":"Simulating Crack Propagation of a Selected Structural Component of the PZL-130 Orlik TC-II Aircrafts","authors":"Krzysztof Jankowski, P. Reymer","doi":"10.1515/fas-2014-0013","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents the process of estimating crack propagation within a selected structural component of the PZL-130 Orlik TC-II using a numerical model. The model is based on technical drawings and measurements of the real structure. The proper definition of the geometry, including the location and size of the gap between elements, is significant for mesh generation. During the simulation process the gap is combined node by node. Each time, the strain energy release rate (G) is calculated. The stress intensity factor and geometry correction factor are defined for consecutive crack lengths, and used further on to estimate crack propagation.","PeriodicalId":37629,"journal":{"name":"Fatigue of Aircraft Structures","volume":"2014 1","pages":"119 - 127"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue of Aircraft Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/fas-2014-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract This paper presents the process of estimating crack propagation within a selected structural component of the PZL-130 Orlik TC-II using a numerical model. The model is based on technical drawings and measurements of the real structure. The proper definition of the geometry, including the location and size of the gap between elements, is significant for mesh generation. During the simulation process the gap is combined node by node. Each time, the strain energy release rate (G) is calculated. The stress intensity factor and geometry correction factor are defined for consecutive crack lengths, and used further on to estimate crack propagation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PZL-130 Orlik TC-II飞机结构部件裂纹扩展模拟
摘要本文介绍了用数值模型估计PZL-130 Orlik TC-II结构构件内裂纹扩展的过程。该模型是根据实际结构的技术图纸和测量结果建立的。适当的几何定义,包括元素之间间隙的位置和大小,对网格生成非常重要。在模拟过程中,间隙是一个节点一个节点地组合。每次计算应变能释放率(G)。定义了连续裂纹长度的应力强度因子和几何修正因子,并进一步用于估计裂纹扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fatigue of Aircraft Structures
Fatigue of Aircraft Structures Engineering-Safety, Risk, Reliability and Quality
CiteScore
0.40
自引率
0.00%
发文量
0
期刊介绍: The publication focuses on problems of aeronautical fatigue and structural integrity. The preferred topics include: full-scale fatigue testing of aircraft and aircraft structural components, fatigue of materials and structures, advanced materials and innovative structural concepts, damage tolerant design of aircraft structure, life extension and management of ageing fleets, structural health monitoring and loads, fatigue crack growth and life prediction methods, NDT inspections, airworthiness considerations.
期刊最新文献
Development of Diffraction Research Methodologies for Mediloy S-CO Alloy Speciments Made Using LPBF Additive Manufacturing Insight into Damping Sources in Turbines Checking the Correctness of the Process of Brazing of the Honeycomb Seal to the Base by Ultrasonic Method Prediction of Fatigue Cracks Using Gamma Function Effect of Strain Range and Hold Time on High Temperature Fatigue Life of G17CrMoV5-10 Cast Alloy Steel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1