{"title":"Pilot Evaluation of Integrating GLONASS, Galileo and BeiDou with GPS in Araim","authors":"A. el-Mowafy","doi":"10.1515/arsa-2016-0003","DOIUrl":null,"url":null,"abstract":"Abstract In this pilot study, availability of the Advanced Receiver Autonomous Integrity Monitoring (ARAIM) when integrating various combinations of satellite constellations including; Galileo, GLONASS and BeiDou with GPS is investigated. The Multiple Hypothesis Solution Separation method was applied using one month of real data. The data was collected at stations of known positions, located in regions that have different coverage levels by the tested constellations. While most previous studies used simulated data, the importance of using real data is twofold. It allows for the use of actual User Range Accuracy (URA) received within the satellite navigation message, which is a fundamental component for computation of the integrity protection level; and the computation of vertical position errors to validate the integrity approach. Results show that the vertical position error was always bounded by the protection level during the test period and the ARAIM availability can reach 100% of the time when using all constellations even though some constellations are yet incomplete.","PeriodicalId":43216,"journal":{"name":"Artificial Satellites-Journal of Planetary Geodesy","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/arsa-2016-0003","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Satellites-Journal of Planetary Geodesy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/arsa-2016-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 12
Abstract
Abstract In this pilot study, availability of the Advanced Receiver Autonomous Integrity Monitoring (ARAIM) when integrating various combinations of satellite constellations including; Galileo, GLONASS and BeiDou with GPS is investigated. The Multiple Hypothesis Solution Separation method was applied using one month of real data. The data was collected at stations of known positions, located in regions that have different coverage levels by the tested constellations. While most previous studies used simulated data, the importance of using real data is twofold. It allows for the use of actual User Range Accuracy (URA) received within the satellite navigation message, which is a fundamental component for computation of the integrity protection level; and the computation of vertical position errors to validate the integrity approach. Results show that the vertical position error was always bounded by the protection level during the test period and the ARAIM availability can reach 100% of the time when using all constellations even though some constellations are yet incomplete.