Calcination of Precipitated Calcium Carbonate with Surfactant-assisted Agglomeration -A Non-isothermal Topochemical Approach

IF 0.8 4区 化学 Q4 CHEMISTRY, MULTIDISCIPLINARY South African Journal of Chemistry-Suid-Afrikaanse Tydskrif Vir Chemie Pub Date : 2019-01-01 DOI:10.17159/0379-4350/2019/v72a15
D. Dasgupta, T. Wiltowski
{"title":"Calcination of Precipitated Calcium Carbonate with Surfactant-assisted Agglomeration -A Non-isothermal Topochemical Approach","authors":"D. Dasgupta, T. Wiltowski","doi":"10.17159/0379-4350/2019/v72a15","DOIUrl":null,"url":null,"abstract":"It has been shown that precipitated calcium carbonate prepared by surfactant-assisted agglomeration (PCC-SAA) provided higher capacity for the carbon dioxide capture during calcination carbonation cycling as compared to commercially available calcium carbonate. It was also shown previously that the capacity was maintained over multiple cycles while commercially available calcium carbonate significantly lost its capacity. In order to understand the differences in the calcination behaviour of the PCC-SAA sample as compared to the commercially available laboratory-grade calcium carbonate (AC) sample, a nonisothermal topochemical approach was adopted to delineate the various controlling mechanisms for calcination of CaCO3. Activation energies were calculated using iso-conversional methods such as Friedman’s method, the KSA method, and the FWO method. In addition, the mechanism was identified at different heating rates by applying the Malek’s method and evaluated in some cases using the JMA kinetics. Finally, four mechanisms were used to calculate the pre-exponential (frequency factor). Some key differences such as the initiation temperature, and mechanisms were found between the two samples. Generally, it was found that the differences in the two samples were primarily due to the structural causes. It was observed that the initiation temperature for CaCO3 decomposition, activation energies and mechanisms were a function of the heating rates. D2 or D4 was identified as the controlling mechanisms at lower temperatures for the PCC-SAA sample in contrast to JMA (n > 1) kinetics for the higher heating rates. For the AC sample, 3D diffusion process appears to control the calcination of the AC sample.","PeriodicalId":49495,"journal":{"name":"South African Journal of Chemistry-Suid-Afrikaanse Tydskrif Vir Chemie","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Chemistry-Suid-Afrikaanse Tydskrif Vir Chemie","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.17159/0379-4350/2019/v72a15","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

It has been shown that precipitated calcium carbonate prepared by surfactant-assisted agglomeration (PCC-SAA) provided higher capacity for the carbon dioxide capture during calcination carbonation cycling as compared to commercially available calcium carbonate. It was also shown previously that the capacity was maintained over multiple cycles while commercially available calcium carbonate significantly lost its capacity. In order to understand the differences in the calcination behaviour of the PCC-SAA sample as compared to the commercially available laboratory-grade calcium carbonate (AC) sample, a nonisothermal topochemical approach was adopted to delineate the various controlling mechanisms for calcination of CaCO3. Activation energies were calculated using iso-conversional methods such as Friedman’s method, the KSA method, and the FWO method. In addition, the mechanism was identified at different heating rates by applying the Malek’s method and evaluated in some cases using the JMA kinetics. Finally, four mechanisms were used to calculate the pre-exponential (frequency factor). Some key differences such as the initiation temperature, and mechanisms were found between the two samples. Generally, it was found that the differences in the two samples were primarily due to the structural causes. It was observed that the initiation temperature for CaCO3 decomposition, activation energies and mechanisms were a function of the heating rates. D2 or D4 was identified as the controlling mechanisms at lower temperatures for the PCC-SAA sample in contrast to JMA (n > 1) kinetics for the higher heating rates. For the AC sample, 3D diffusion process appears to control the calcination of the AC sample.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
表面活性剂辅助团聚煅烧沉淀碳酸钙——非等温拓扑化学方法
研究表明,与市售碳酸钙相比,用表面活性剂辅助团聚法制备的沉淀碳酸钙在煅烧碳化循环过程中具有更高的二氧化碳捕集能力。之前的研究还表明,当商用碳酸钙明显失去其容量时,其容量在多个循环中保持不变。为了了解PCC-SAA样品与市售实验室级碳酸钙(AC)样品的煅烧行为差异,采用非等温拓扑化学方法来描述CaCO3煅烧的各种控制机制。活化能的计算采用等转换方法,如Friedman法、KSA法和two法。此外,应用Malek方法确定了不同加热速率下的机理,并在某些情况下使用JMA动力学进行了评估。最后,采用四种机制计算指数前因子(频率因子)。在两个样品之间发现了一些关键的差异,如起始温度和机制。总的来说,我们发现两个样品的差异主要是由结构原因造成的。结果表明,CaCO3分解的起始温度、活化能和机理与升温速率有关。D2或D4被确定为低温下PCC-SAA样品的控制机制,而JMA (n > 1)的升温速率较高。对于交流样品,三维扩散过程似乎控制着交流样品的煅烧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
6
审稿时长
>12 weeks
期刊介绍: Original work in all branches of chemistry is published in the South African Journal of Chemistry. Contributions in English may take the form of papers, short communications, or critical reviews.
期刊最新文献
Trace nickel analysis in water samples via paper-based devices coupled with co-precipitation Quinoline-benzofuran and quinoline-benzothiophene derivatives as antiplasmodium agents A simple method for colourimetric determination of silver using a home-made double beam photometer Re-screening and preliminary in vitro evaluation of resorcinol based Hsp90 inhibitors for potential protocidal activity Effects of calcination temperature of eggshell-derived CaO as a catalyst for biodiesel production from waste cooking oil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1