{"title":"Sampled-based bipartite tracking consensus of nonlinear multiagents subject to input saturation","authors":"Luyang Yu, Ying-liu Cui, Z. Lu, Yurong Liu","doi":"10.20517/ces.2022.08","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the sampled-data bipartite tracking consensus problem for a class of nonlinear multiagent systems (MASs) with input saturation. Both competitive and cooperative interactions coexist among agents in the concerned network. By resorting to Lyapunov stable theory and linear matrix inequality (LMI) technique, several criteria are obtained to ensure that the considered MASs can achieve the bipartite tracking consensus. Besides, with the help of the decoupled method, the dimensions of LMIs are reduced for mitigation of the computation complexity so that the obtained results can be applied to large-scaled MASs. Furthermore, the controller gain matrix is explicitly expressed in terms of solutions to a set of LMIs. We also provide with an estimate of elliptical attraction domain of bipartite tracking consensus. Finally, numerical simulation is exploited to support our theoretical analysis.","PeriodicalId":72652,"journal":{"name":"Complex engineering systems (Alhambra, Calif.)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex engineering systems (Alhambra, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/ces.2022.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper is concerned with the sampled-data bipartite tracking consensus problem for a class of nonlinear multiagent systems (MASs) with input saturation. Both competitive and cooperative interactions coexist among agents in the concerned network. By resorting to Lyapunov stable theory and linear matrix inequality (LMI) technique, several criteria are obtained to ensure that the considered MASs can achieve the bipartite tracking consensus. Besides, with the help of the decoupled method, the dimensions of LMIs are reduced for mitigation of the computation complexity so that the obtained results can be applied to large-scaled MASs. Furthermore, the controller gain matrix is explicitly expressed in terms of solutions to a set of LMIs. We also provide with an estimate of elliptical attraction domain of bipartite tracking consensus. Finally, numerical simulation is exploited to support our theoretical analysis.