Mechanical properties and constitutive model for artificially structured soils with an initial stress-induced anisotropy

IF 0.5 4区 工程技术 Q4 ENGINEERING, GEOLOGICAL Acta Geotechnica Slovenica Pub Date : 2020-01-01 DOI:10.18690/ACTAGEOTECHSLOV.17.2.46-55.2020
Chuan He, E. Liu, Qingke Nie
{"title":"Mechanical properties and constitutive model for artificially structured soils with an initial stress-induced anisotropy","authors":"Chuan He, E. Liu, Qingke Nie","doi":"10.18690/ACTAGEOTECHSLOV.17.2.46-55.2020","DOIUrl":null,"url":null,"abstract":"A series of triaxial compression tests was performed on artificially structured soil samples with an initial stress- -induced anisotropy at confining pressures of 25, 37.5, 50, 100, 200, and 400 kPa. Based on the results of these tests, a constitutive model for structured soils with initial stress-induced anisotropy was formulated. In the proposed model, the initially anisotropic structured soils are regarded as heterogeneous materials composed of bonded blocks and weaker bands. The bonded blocks (denoted as bonded elements) are described as transversely isotropic elastic– brittle materials, while the weaker bands (denoted as frictional elements) are described by the Lade–Duncan model of elastic–plastic materials. Based on the homogenization theorem for heterogeneous materials, and the introduction of structural parameters such as the breakage ratio and the local strain coefficient, the non-uniform distribution of stress and strain within a representative volume element was obtained. Finally, the parameters of the model were determined based on experimental results. The model was verified with test results, demonstrating that it can effectively capture many important features of artificially structured soils with an initial stress-induced anisotropy.","PeriodicalId":50897,"journal":{"name":"Acta Geotechnica Slovenica","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica Slovenica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.18690/ACTAGEOTECHSLOV.17.2.46-55.2020","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A series of triaxial compression tests was performed on artificially structured soil samples with an initial stress- -induced anisotropy at confining pressures of 25, 37.5, 50, 100, 200, and 400 kPa. Based on the results of these tests, a constitutive model for structured soils with initial stress-induced anisotropy was formulated. In the proposed model, the initially anisotropic structured soils are regarded as heterogeneous materials composed of bonded blocks and weaker bands. The bonded blocks (denoted as bonded elements) are described as transversely isotropic elastic– brittle materials, while the weaker bands (denoted as frictional elements) are described by the Lade–Duncan model of elastic–plastic materials. Based on the homogenization theorem for heterogeneous materials, and the introduction of structural parameters such as the breakage ratio and the local strain coefficient, the non-uniform distribution of stress and strain within a representative volume element was obtained. Finally, the parameters of the model were determined based on experimental results. The model was verified with test results, demonstrating that it can effectively capture many important features of artificially structured soils with an initial stress-induced anisotropy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有初始应力诱导各向异性的人工结构土的力学特性和本构模型
在围压分别为25、37.5、50、100、200和400 kPa的条件下,对具有初始应力诱导各向异性的人工结构土进行了三轴压缩试验。在此基础上,建立了具有初始应力诱导各向异性的结构性土的本构模型。在该模型中,将初始各向异性结构土视为由粘结块和较弱带组成的非均质材料。结合块(表示为结合单元)被描述为横向各向同性弹脆材料,而较弱的带(表示为摩擦单元)被描述为弹塑性材料的Lade-Duncan模型。基于非均质材料的均质化定理,引入断裂比和局部应变系数等结构参数,得到了具有代表性的体积元内应力应变的非均匀分布。最后,根据实验结果确定模型参数。试验结果表明,该模型能够有效地捕捉具有初始应力诱导各向异性的人工结构土的许多重要特征。清聂
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Geotechnica Slovenica
Acta Geotechnica Slovenica 地学-工程:地质
CiteScore
1.20
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: ACTA GEOTECHNICA SLOVENICA aims to play an important role in publishing high-quality, theoretical papers from important and emerging areas that will have a lasting impact on fundamental and practical aspects of geomechanics and geotechnical engineering. ACTA GEOTECHNICA SLOVENICA publishes papers from the following areas: soil and rock mechanics, engineering geology, environmental geotechnics, geosynthetic, geotechnical structures, numerical and analytical methods, computer modelling, optimization of geotechnical structures, field and laboratory testing. The journal is published twice a year.
期刊最新文献
Diametric splitting tests on unsaturated expansive soil with different dry densities based on particle image velocimetry technique A framework for the use of reliability methods in deep urban excavations analysis Threshold silt content dependency on particle morphology (shape and size) of granular materials: review with new evidence Small scale model test on lateral behaviors of pile group in loose silica sand Improved general slice method of limit equilibrium for slope stability analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1