Investigation of the impact behavior when using single and double layers of geosynthetics on buried pipe structures

IF 0.5 4区 工程技术 Q4 ENGINEERING, GEOLOGICAL Acta Geotechnica Slovenica Pub Date : 2021-01-01 DOI:10.18690/actageotechslov.18.2.83-104.2022
Güneş Babagiray, S. Akbas, Ö. Anıl
{"title":"Investigation of the impact behavior when using single and double layers of geosynthetics on buried pipe structures","authors":"Güneş Babagiray, S. Akbas, Ö. Anıl","doi":"10.18690/actageotechslov.18.2.83-104.2022","DOIUrl":null,"url":null,"abstract":"In this study the behavior of buried pipes under impact loading was investigated by forming protective layers with geosynthetics in various combinations in single and double layers. For this purpose, experiments were performed using a HDPE pipe with a 160 mm outer diameter, which is frequently used in the laboratory. In the experiments, Geocell, Geogrid, Geotextile, and Geonet protective layers at a depth of 120 mm were tested by laying Geosynthetic in single and double layers and then tested under the effects of impact loading by using free-weight dropping test apparatus. In the experimental study, the protective layers' energy absorption capacities were calculated by using acceleration measurements over the pipe and then evaluated together with their costs. In the experiments with a single layer Geosynthetic as a protective layer, Geonet's most successful protection structure was a 72.9 % acceleration-damping capacity. In the experiments with the combination of double-layer reinforcement elements, the most successful performance with 88.0 %, in terms of acceleration damping capacity, was obtained from Geocell and Geonet's combination with a thickness of 1 mm at a depth of 50 mm. When all the experiments with single- and double-layer Geosynthetic protective elements were evaluated as an acceleration damping ratio per unit cost, it was found that the optimum application was achieved when using a single-layer Geogrid.","PeriodicalId":50897,"journal":{"name":"Acta Geotechnica Slovenica","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica Slovenica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.18690/actageotechslov.18.2.83-104.2022","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 1

Abstract

In this study the behavior of buried pipes under impact loading was investigated by forming protective layers with geosynthetics in various combinations in single and double layers. For this purpose, experiments were performed using a HDPE pipe with a 160 mm outer diameter, which is frequently used in the laboratory. In the experiments, Geocell, Geogrid, Geotextile, and Geonet protective layers at a depth of 120 mm were tested by laying Geosynthetic in single and double layers and then tested under the effects of impact loading by using free-weight dropping test apparatus. In the experimental study, the protective layers' energy absorption capacities were calculated by using acceleration measurements over the pipe and then evaluated together with their costs. In the experiments with a single layer Geosynthetic as a protective layer, Geonet's most successful protection structure was a 72.9 % acceleration-damping capacity. In the experiments with the combination of double-layer reinforcement elements, the most successful performance with 88.0 %, in terms of acceleration damping capacity, was obtained from Geocell and Geonet's combination with a thickness of 1 mm at a depth of 50 mm. When all the experiments with single- and double-layer Geosynthetic protective elements were evaluated as an acceleration damping ratio per unit cost, it was found that the optimum application was achieved when using a single-layer Geogrid.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单层和双层土工合成材料对埋地管道结构的冲击性能研究
本文采用不同组合的土工合成材料组成单层和双层保护层,研究了埋地管道在冲击载荷作用下的性能。为此,实验采用实验室常用的外径为160 mm的HDPE管进行。在实验中,土工格栅、土工织物和土工网保护层分别采用单层和双层铺设土工合成材料的方法进行了120 mm深度的土工单元、土工格栅、土工织物和土工网保护层的测试,然后使用自由下落试验装置进行了冲击载荷作用下的测试。在实验研究中,通过管道上的加速度测量计算了保护层的能量吸收能力,并对其成本进行了评估。在单层土工合成材料作为保护层的实验中,Geonet最成功的保护结构是72.9%的加速度阻尼能力。在双层加筋单元组合试验中,厚度为1 mm、深度为50 mm的Geocell和Geonet组合的加速度阻尼能力达到88.0%,效果最好。将单层和双层土工合成防护元件的试验结果以单位成本的加速度阻尼比进行评价,发现单层土工合成防护元件的应用效果最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Geotechnica Slovenica
Acta Geotechnica Slovenica 地学-工程:地质
CiteScore
1.20
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: ACTA GEOTECHNICA SLOVENICA aims to play an important role in publishing high-quality, theoretical papers from important and emerging areas that will have a lasting impact on fundamental and practical aspects of geomechanics and geotechnical engineering. ACTA GEOTECHNICA SLOVENICA publishes papers from the following areas: soil and rock mechanics, engineering geology, environmental geotechnics, geosynthetic, geotechnical structures, numerical and analytical methods, computer modelling, optimization of geotechnical structures, field and laboratory testing. The journal is published twice a year.
期刊最新文献
Diametric splitting tests on unsaturated expansive soil with different dry densities based on particle image velocimetry technique A framework for the use of reliability methods in deep urban excavations analysis Threshold silt content dependency on particle morphology (shape and size) of granular materials: review with new evidence Small scale model test on lateral behaviors of pile group in loose silica sand Improved general slice method of limit equilibrium for slope stability analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1