N. Saleh, H. Elhaes, Osama Osman, A. Mahmoud, M. Ibrahim
{"title":"Spectroscopic Analyses of Modified Fulleropyrrolidine Derivatives","authors":"N. Saleh, H. Elhaes, Osama Osman, A. Mahmoud, M. Ibrahim","doi":"10.2174/1874383801509010001","DOIUrl":null,"url":null,"abstract":"Fullerene (C60) is enhanced with pyrrolidine group to produce fulleropyrrolidine which is considered as one of the most important derivatives of fullerene. Fulleropyrrolidine is further modified in order to enhance its solubility which in turn could enhance its biological applications. Accordingly this work is dedicated to modify fulleropyrrolidine carbodithioic acid as NO2 group introduced at meta position. Quantitative structure-activity relationship models (QSAR) was utilized to evaluate the biological activates of the investigated compounds through some descriptors. Later on chalcogenide could be subtitled in order to form three derivative groups. The QSAR descriptors were compared with the QSAR of the parent compound. Results indicate that, NO2 group enhances the biological activity.","PeriodicalId":88758,"journal":{"name":"The open spectroscopy journal","volume":"9 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The open spectroscopy journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874383801509010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Fullerene (C60) is enhanced with pyrrolidine group to produce fulleropyrrolidine which is considered as one of the most important derivatives of fullerene. Fulleropyrrolidine is further modified in order to enhance its solubility which in turn could enhance its biological applications. Accordingly this work is dedicated to modify fulleropyrrolidine carbodithioic acid as NO2 group introduced at meta position. Quantitative structure-activity relationship models (QSAR) was utilized to evaluate the biological activates of the investigated compounds through some descriptors. Later on chalcogenide could be subtitled in order to form three derivative groups. The QSAR descriptors were compared with the QSAR of the parent compound. Results indicate that, NO2 group enhances the biological activity.