Narrow-Linewidth Pr:YLF Laser for High-Resolution Raman Trace Gas Spectroscopy

Charuka Muktha Arachchige, A. Muller
{"title":"Narrow-Linewidth Pr:YLF Laser for High-Resolution Raman Trace Gas Spectroscopy","authors":"Charuka Muktha Arachchige, A. Muller","doi":"10.3390/spectroscj1020008","DOIUrl":null,"url":null,"abstract":"Spontaneous Raman gas spectroscopy, which stands out as a versatile chemical identification tool, typically relies on frequency-doubled infrared laser sources to deliver the high power and narrow linewidth needed to achieve chemical detection at trace concentrations. The relatively low efficiency and high complexity of these lasers, however, can make them challenging to integrate into field-deployable instruments. Additionally, the frequency doubling prevents the utilization of circulating laser power for Raman enhancement. A diode-pumped Pr:YLF laser was investigated as an alternative narrow-band light source that could potentially realize a more portable Raman scattering system. When operated with an intracavity etalon, the laser realized a linewidth of 0.5 cm−1 with a green output power of 0.37 W and circulating power of 16 W when pumped with 3.1 W from a blue diode laser. Trace detection at atmospheric pressure with a high degree of spectral discrimination was demonstrated by resolving overlapping N2/CO and CO2/N2O Raman bands in air.","PeriodicalId":88758,"journal":{"name":"The open spectroscopy journal","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The open spectroscopy journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/spectroscj1020008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spontaneous Raman gas spectroscopy, which stands out as a versatile chemical identification tool, typically relies on frequency-doubled infrared laser sources to deliver the high power and narrow linewidth needed to achieve chemical detection at trace concentrations. The relatively low efficiency and high complexity of these lasers, however, can make them challenging to integrate into field-deployable instruments. Additionally, the frequency doubling prevents the utilization of circulating laser power for Raman enhancement. A diode-pumped Pr:YLF laser was investigated as an alternative narrow-band light source that could potentially realize a more portable Raman scattering system. When operated with an intracavity etalon, the laser realized a linewidth of 0.5 cm−1 with a green output power of 0.37 W and circulating power of 16 W when pumped with 3.1 W from a blue diode laser. Trace detection at atmospheric pressure with a high degree of spectral discrimination was demonstrated by resolving overlapping N2/CO and CO2/N2O Raman bands in air.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高分辨率拉曼痕量气体光谱的窄线宽Pr:YLF激光器
自发拉曼气体光谱作为一种通用的化学识别工具,通常依靠倍频红外激光源来提供高功率和窄线宽,以实现痕量浓度的化学检测。然而,这些激光器的相对低效率和高复杂性使得它们难以集成到现场可部署的仪器中。此外,频率加倍阻碍了循环激光功率用于拉曼增强。研究了一种二极管泵浦的Pr:YLF激光器作为窄带光源,可能实现更便携的拉曼散射系统。当用腔内标准子工作时,激光器的线宽为0.5 cm−1,绿色输出功率为0.37 W;当泵浦的蓝色二极管激光器功率为3.1 W时,激光器的循环功率为16 W。通过解析空气中重叠的N2/CO和CO2/N2O拉曼光谱,证明了在常压下的痕量探测具有高度的光谱分辨能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Conditions for a Multimode Laser Diode with Delayed Optical Feedback in Terahertz Time-Domain Spectroscopy A Spectroscopy-Based Multi-Analytical Approach for Studies in Conservation: Decorations in the Alexander Palace (Tsarskoye Selo) Rotational Isomerism of the Side Chains of Hydroxypropyl Cellulose in Aqueous Solution Observed Using Attenuated Total Reflectance Infrared Spectroscopy Effect of Alkaline Salts on Pyrolyzed Solid Wastes in Used Edible Oils: An Attenuated Total Reflectance Analysis of Surface Compounds as a Function of the Temperature Narrow-Linewidth Pr:YLF Laser for High-Resolution Raman Trace Gas Spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1