K. A. Sujatmiko, K. Ichii, Soichiro Murata, I. Mulia
{"title":"Application of Stress Parameter from Liquefaction Analysis on the Landslide Induced Tsunami Simulation: A Case Study of the 2018 Palu Tsunami","authors":"K. A. Sujatmiko, K. Ichii, Soichiro Murata, I. Mulia","doi":"10.20965/jdr.2023.p0199","DOIUrl":null,"url":null,"abstract":"The accuracy of numerical simulations of a landslide-induced tsunami depends on the landslide characteristics, such as landslide geometry and geotechnical parameters. However, owing to the difficulty in sampling and measuring submarine landslides, rough assumptions of landslide parameters typically lead to significant uncertainties. In the 2018 Palu event, the earthquake was followed by immediate cascading disasters of coastal subsidence, both land and submarine landslides and a tsunami. This scenario provides opportunities to analyze landslide phenomena on land to characterize the submarine landslide causing the tsunami. This study proposes a new approach of using shear-stress parameters obtained from liquefaction analyses as input for landslide-induced tsunami simulation. To obtain the submarine landslide parameter, using the finite element method we modeled the liquefaction happened in Jono-Oge located near Palu Valley area. The shear-stress in this area was quite small with the range 1.5–3.5 kPa. We found that tsunami simulation yielded better accuracy by applying the stress value range obtained from the liquefaction analysis on land (1.5 kPa) rather than the typically adopted stress value for general cases (20 kPa). The result from the tsunami simulation using two-layer method with identical landslide location and geometry showed that shear-stress value of landslide mass gave quite a significant effect to the tsunami height.","PeriodicalId":46831,"journal":{"name":"Journal of Disaster Research","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Disaster Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jdr.2023.p0199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
The accuracy of numerical simulations of a landslide-induced tsunami depends on the landslide characteristics, such as landslide geometry and geotechnical parameters. However, owing to the difficulty in sampling and measuring submarine landslides, rough assumptions of landslide parameters typically lead to significant uncertainties. In the 2018 Palu event, the earthquake was followed by immediate cascading disasters of coastal subsidence, both land and submarine landslides and a tsunami. This scenario provides opportunities to analyze landslide phenomena on land to characterize the submarine landslide causing the tsunami. This study proposes a new approach of using shear-stress parameters obtained from liquefaction analyses as input for landslide-induced tsunami simulation. To obtain the submarine landslide parameter, using the finite element method we modeled the liquefaction happened in Jono-Oge located near Palu Valley area. The shear-stress in this area was quite small with the range 1.5–3.5 kPa. We found that tsunami simulation yielded better accuracy by applying the stress value range obtained from the liquefaction analysis on land (1.5 kPa) rather than the typically adopted stress value for general cases (20 kPa). The result from the tsunami simulation using two-layer method with identical landslide location and geometry showed that shear-stress value of landslide mass gave quite a significant effect to the tsunami height.