BLOCK MODEL OPTIMIZATION AND RESOURCE ESTIMATION OF THE ANGOURAN MINE BY TRANSFERRING THE EXPLORATORY DATA FROM THE LOCAL COORDINATE SYSTEM TO THE UTM

IF 1.2 Q3 GEOSCIENCES, MULTIDISCIPLINARY Rudarsko-Geolosko-Naftni Zbornik Pub Date : 2023-01-01 DOI:10.17794/rgn.2023.3.1
M. Rezaei, S. Fallahi
{"title":"BLOCK MODEL OPTIMIZATION AND RESOURCE ESTIMATION OF THE ANGOURAN MINE BY TRANSFERRING THE EXPLORATORY DATA FROM THE LOCAL COORDINATE SYSTEM TO THE UTM","authors":"M. Rezaei, S. Fallahi","doi":"10.17794/rgn.2023.3.1","DOIUrl":null,"url":null,"abstract":"Resource estimation is one of the most important steps in the mining process. Precise resource estimation has a significant influence on the optimization of subsequent mining steps, i.e. mine planning and scheduling. The previous resource estimation in the Angouran Mine was conducted based on the provided information in the local coordinate system which causes considerable errors in estimations. Therefore, an attempt is made in this research to optimize the block model of the Angouran Mine and resource estimation based on the information in the UTM global coordinate system. For this purpose, exploratory data is firstly transferred from the local coordinate system to the UTM environment. Then, block model optimization is conducted using indicator kriging (IK) in which the waste blocks are removed and the block model was optimized. Finally, resource estimation is performed using the inverse distance weighting (IDW) and simple kriging (SK) methods. After variogram analyses in different directions, it was found that the mine deposit is anisotropic. Also, validation results showed that the acquired correlation coefficient in the carbonate and sulfide sections for IDW, SK and IK is 0.86, 0.87 and 0.92, and 0.88, 0.87 and 0.92, respectively. Finally, the obtained grades and tonnages are compared with the actual data of the exploratory boreholes, mined blocks and previous resource estimation in the mine. Comparative results showed that the obtained grades and tonnages from both previous and new models are over-estimated and higher than the actual values. The minimum errors of grade estimation equal 46% and 23.1% for previous and new resource estimations (before and after the waste removal), respectively. Also, the mining errors of tonnage estimation are 50.29% and 28.37% for previous and new models, respectively. This field comparison proved that transferring the exploratory data to the UTM system, utilization of the IK to remove the waste blocks and applying the SK for resource estimation lead to the optimization of the block model and a reduction in the estimation error compared to the previous estimations for the mine.","PeriodicalId":44536,"journal":{"name":"Rudarsko-Geolosko-Naftni Zbornik","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rudarsko-Geolosko-Naftni Zbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17794/rgn.2023.3.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Resource estimation is one of the most important steps in the mining process. Precise resource estimation has a significant influence on the optimization of subsequent mining steps, i.e. mine planning and scheduling. The previous resource estimation in the Angouran Mine was conducted based on the provided information in the local coordinate system which causes considerable errors in estimations. Therefore, an attempt is made in this research to optimize the block model of the Angouran Mine and resource estimation based on the information in the UTM global coordinate system. For this purpose, exploratory data is firstly transferred from the local coordinate system to the UTM environment. Then, block model optimization is conducted using indicator kriging (IK) in which the waste blocks are removed and the block model was optimized. Finally, resource estimation is performed using the inverse distance weighting (IDW) and simple kriging (SK) methods. After variogram analyses in different directions, it was found that the mine deposit is anisotropic. Also, validation results showed that the acquired correlation coefficient in the carbonate and sulfide sections for IDW, SK and IK is 0.86, 0.87 and 0.92, and 0.88, 0.87 and 0.92, respectively. Finally, the obtained grades and tonnages are compared with the actual data of the exploratory boreholes, mined blocks and previous resource estimation in the mine. Comparative results showed that the obtained grades and tonnages from both previous and new models are over-estimated and higher than the actual values. The minimum errors of grade estimation equal 46% and 23.1% for previous and new resource estimations (before and after the waste removal), respectively. Also, the mining errors of tonnage estimation are 50.29% and 28.37% for previous and new models, respectively. This field comparison proved that transferring the exploratory data to the UTM system, utilization of the IK to remove the waste blocks and applying the SK for resource estimation lead to the optimization of the block model and a reduction in the estimation error compared to the previous estimations for the mine.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将勘探数据从局部坐标系转换为utm坐标系,进行安姑然矿块体模型优化与资源估算
资源估算是采矿过程中最重要的步骤之一。准确的资源估计对后续开采步骤的优化,即矿山规划和调度具有重要影响。以往Angouran矿区的资源估算是根据当地坐标系提供的信息进行的,因此估算误差较大。因此,本研究尝试基于UTM全局坐标系下的信息,对Angouran矿区区块模型进行优化和资源估算。为此,首先将探测数据从本地坐标系传输到UTM环境。然后,采用指标克里格法(IK)对区块模型进行优化,剔除废弃区块,对区块模型进行优化。最后,利用逆距离加权(IDW)和简单克里格(SK)方法进行资源估计。通过不同方向的变差分析,发现该矿床具有各向异性。验证结果表明,IDW、SK和IK碳酸盐岩和硫化物剖面的相关系数分别为0.86、0.87和0.92,以及0.88、0.87和0.92。最后,将得到的品位和吨位与该矿勘探钻孔、开采区块和以往资源估算的实际数据进行了比较。对比结果表明,新旧模型所得到的等级和吨位值均偏高,高于实际值。以前和新资源(清除废物之前和之后)的品位估计的最小误差分别为46%和23.1%。旧模型和新模型的采掘误差分别为50.29%和28.37%。现场对比证明,将勘探数据转入UTM系统,利用IK去除废弃区块,并应用SK进行资源估计,与之前的矿山估计相比,区块模型得到了优化,估计误差减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.50
自引率
15.40%
发文量
50
审稿时长
12 weeks
期刊最新文献
A NEW TECHNIQUE BASED ON ANT COLONY OPTIMIZATION FOR DESIGNING MINING PUSHBACKS IN THE PRESENCE OF GEOLOGICAL UNCERTAINTY IMPROVED CONCEPTUAL DESIGN OF LILW REPOSITORY ONE-STEP ELECTROCHEMICAL SYNTHESIS OF PEDOT BASED COMPOSITES FOR SUPERCAPACITOR APPLICATIONS A COMPARATIVE STUDY OF THE BIVARIATE STATISTICAL METHODS AND THE ANALYTICAL HIERARCHICAL PROCESS FOR THE ASSESSMENT OF MASS MOVEMENT SUSCEPTIBILITY. A CASE STUDY: THE LM-116 ROAD – PERU THE INTERACTION AND SYNERGIC EFFECT OF PARTICLE SIZE ON FLOTATION EFFICIENCY: A COMPARISON STUDY OF RECOVERY BY SIZE, AND BY LIBERATION BETWEEN LAB AND INDUSTRIAL SCALE DATA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1