Feasibility study of a sinusoidal shear flow generator for using counter-oscillating flow fields in monitoring of individual red blood cells under shear flow conditions
{"title":"Feasibility study of a sinusoidal shear flow generator for using counter-oscillating flow fields in monitoring of individual red blood cells under shear flow conditions","authors":"N. Watanabe, Tatsuya Tsuzuki, Yusuke Suzuki","doi":"10.17106/JBR.29.36","DOIUrl":null,"url":null,"abstract":"Aim: To develop a prototype device that allows direct observation of the deformation of individual red blood cells (RBCs) in an oscillating shear flow field. Method: A counter-oscillation mechanism composed of two parallel glass plates was constructed to keep RBCs floating at the centerline of a 30 μm fluid gap. RBCs in the suspension fluid were observed using a high-speed camera with 40-fold magnification. Results: RBCs remained within the camera’s field of view when exposed to a shear force field that oscillated at 2 Hz. Moreover, glutaraldehyde-treated, hardened RBCs always tumbled and low-density RBCs had a larger elongation than high-density RBCs when exposed to the same shear field. Conclusion: The feasibility of this counter-oscillating mechanism for evaluating RBC deformability has been demonstrated.","PeriodicalId":39272,"journal":{"name":"Journal of Biorheology","volume":"29 1","pages":"36-41"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.17106/JBR.29.36","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biorheology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17106/JBR.29.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3
Abstract
Aim: To develop a prototype device that allows direct observation of the deformation of individual red blood cells (RBCs) in an oscillating shear flow field. Method: A counter-oscillation mechanism composed of two parallel glass plates was constructed to keep RBCs floating at the centerline of a 30 μm fluid gap. RBCs in the suspension fluid were observed using a high-speed camera with 40-fold magnification. Results: RBCs remained within the camera’s field of view when exposed to a shear force field that oscillated at 2 Hz. Moreover, glutaraldehyde-treated, hardened RBCs always tumbled and low-density RBCs had a larger elongation than high-density RBCs when exposed to the same shear field. Conclusion: The feasibility of this counter-oscillating mechanism for evaluating RBC deformability has been demonstrated.