A review on the applications of nanotechnology in orthodontics

IF 1.4 Q4 NANOSCIENCE & NANOTECHNOLOGY Nanomedicine Journal Pub Date : 2019-01-01 DOI:10.22038/NMJ.2019.06.002
S. Tahmasbi, Fatemeh Mohamadian, S. Hosseini, L. Eftekhar
{"title":"A review on the applications of nanotechnology in orthodontics","authors":"S. Tahmasbi, Fatemeh Mohamadian, S. Hosseini, L. Eftekhar","doi":"10.22038/NMJ.2019.06.002","DOIUrl":null,"url":null,"abstract":"Objective (s): Nanotechnology has gained importance in recent years due to its ability in the enhancement of materials properties and other specifications such as antimicrobial properties. Nano-sized materials have been applied in various fields of dentistry. Nanotechnology can be employed in orthodontics to enhance the quality of treatment. In the current study, a comprehensive review is carried out on the applications of nanotechnology in orthodontics. Materials and Methods: In the first step, various databases such as Scopus, Google Scholar and Pubmed were searched by using appropriate keywords for the present study. Afterwards, the related resources were selected to be reviewed. Finally, the key findings of the reviewed studies were represented and summarized. Results: Based on the reviewed researches, nanotechnology is applicable in various aspects of orthodontics. By using nanotechnology, improved properties in mechanical and medical specifications are achievable. For instance, by using nano coating in archwires, the friction force between components can be reduced and facilitate its motion. In addition, adding some types of nano particles to the composites resulted in improvement in tensile and shear bond strength. Antimicrobial properties of specific nano particles such as silver makes them favorable for reducing microorganisms in orthodontics treatment. Moreover, nanotechnology can be used in nano-identation test to assess the tools employed in orthodontics. Conclusion: nanotechnology can be broadly employed in orthodontics to achieve better treatment including improved strength of utilized materials, more accurate positioning and reduced microorganisms.","PeriodicalId":18933,"journal":{"name":"Nanomedicine Journal","volume":"6 1","pages":"11-18"},"PeriodicalIF":1.4000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22038/NMJ.2019.06.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 10

Abstract

Objective (s): Nanotechnology has gained importance in recent years due to its ability in the enhancement of materials properties and other specifications such as antimicrobial properties. Nano-sized materials have been applied in various fields of dentistry. Nanotechnology can be employed in orthodontics to enhance the quality of treatment. In the current study, a comprehensive review is carried out on the applications of nanotechnology in orthodontics. Materials and Methods: In the first step, various databases such as Scopus, Google Scholar and Pubmed were searched by using appropriate keywords for the present study. Afterwards, the related resources were selected to be reviewed. Finally, the key findings of the reviewed studies were represented and summarized. Results: Based on the reviewed researches, nanotechnology is applicable in various aspects of orthodontics. By using nanotechnology, improved properties in mechanical and medical specifications are achievable. For instance, by using nano coating in archwires, the friction force between components can be reduced and facilitate its motion. In addition, adding some types of nano particles to the composites resulted in improvement in tensile and shear bond strength. Antimicrobial properties of specific nano particles such as silver makes them favorable for reducing microorganisms in orthodontics treatment. Moreover, nanotechnology can be used in nano-identation test to assess the tools employed in orthodontics. Conclusion: nanotechnology can be broadly employed in orthodontics to achieve better treatment including improved strength of utilized materials, more accurate positioning and reduced microorganisms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米技术在口腔正畸中的应用综述
目标:纳米技术近年来变得越来越重要,因为它能够增强材料性能和其他规格,如抗菌性能。纳米材料已广泛应用于牙科的各个领域。纳米技术可用于正畸治疗,以提高治疗质量。本文对纳米技术在口腔正畸中的应用进行了综述。材料与方法:第一步,检索Scopus、谷歌Scholar、Pubmed等数据库,使用适合本研究的关键词进行检索。然后,选择相关资源进行审查。最后,对综述研究的主要发现进行了阐述和总结。结果:综述了纳米技术在口腔正畸各方面的应用。通过使用纳米技术,可以提高机械和医疗规格的性能。例如,在拱丝中使用纳米涂层,可以减少部件之间的摩擦力,促进其运动。此外,在复合材料中加入某些类型的纳米颗粒可以提高复合材料的拉伸和剪切强度。特定纳米颗粒如银的抗菌特性使它们有利于减少正畸治疗中的微生物。此外,纳米技术可以用于纳米鉴定测试,以评估正畸所使用的工具。结论:纳米技术可广泛应用于正畸治疗,提高材料强度,定位更准确,微生物减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanomedicine Journal
Nanomedicine Journal NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
3.40
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Nano aptasensors for detection of streptomycin: A review Synthesis of silver nanoparticles by Galega officinalis and its hypoglycemic effects in type 1 diabetic rats Evaluation of mPEG-PLA nanoparticles as vaccine delivery system for modified protective antigen of Bacillus anthracis Synthesis and evaluation of SPION@CMD@Ser-LTVSPWY peptide as a targeted probe for detection of HER2+ cancer cells in MRI Synthesis of L-DOPA conjugated doxorubicin-polyethylenimine nanocarrier and evaluation of its cytotoxicity on A375 and HepG2 cell lines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1