Choice of Monitoring Mechanism for Optimal Nonparametric Functional Estimation for Binary Data

IF 1.2 4区 数学 International Journal of Biostatistics Pub Date : 2006-09-25 DOI:10.2202/1557-4679.1031
N. Jewell, M. J. van der Laan, S. Shiboski
{"title":"Choice of Monitoring Mechanism for Optimal Nonparametric Functional Estimation for Binary Data","authors":"N. Jewell, M. J. van der Laan, S. Shiboski","doi":"10.2202/1557-4679.1031","DOIUrl":null,"url":null,"abstract":"Optimal designs of dose levels in order to estimate parameters from a model for binary response data have a long and rich history. These designs are based on parametric models. Here we consider fully nonparametric models with interest focused on estimation of smooth functionals using plug-in estimators based on the nonparametric maximum likelihood estimator. An important application of the results is the derivation of the optimal choice of the monitoring time distribution function for current status observation of a survival distribution. The optimal choice depends in a simple way on the dose-response function and the form of the functional. The results can be extended to allow dependence of the monitoring mechanism on covariates.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"2 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2006-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2202/1557-4679.1031","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Optimal designs of dose levels in order to estimate parameters from a model for binary response data have a long and rich history. These designs are based on parametric models. Here we consider fully nonparametric models with interest focused on estimation of smooth functionals using plug-in estimators based on the nonparametric maximum likelihood estimator. An important application of the results is the derivation of the optimal choice of the monitoring time distribution function for current status observation of a survival distribution. The optimal choice depends in a simple way on the dose-response function and the form of the functional. The results can be extended to allow dependence of the monitoring mechanism on covariates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二值数据最优非参数泛函估计监控机制的选择
为了从二元响应数据模型中估计参数而进行剂量水平的优化设计有着悠久而丰富的历史。这些设计是基于参数化模型的。在这里,我们考虑完全非参数模型,重点关注使用基于非参数极大似然估计的插件估计器估计光滑函数。该结果的一个重要应用是推导了生存分布当前状态观测的监测时间分布函数的最优选择。最优选择以一种简单的方式取决于剂量-响应函数和泛函的形式。结果可以推广到允许监控机制对协变量的依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Biostatistics
International Journal of Biostatistics Mathematics-Statistics and Probability
CiteScore
2.30
自引率
8.30%
发文量
28
期刊介绍: The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.
期刊最新文献
Hypothesis testing for detecting outlier evaluators. Optimizing personalized treatments for targeted patient populations across multiple domains. History-restricted marginal structural model and latent class growth analysis of treatment trajectories for a time-dependent outcome. Hybrid classical-Bayesian approach to sample size determination for two-arm superiority clinical trials. An interpretable cluster-based logistic regression model, with application to the characterization of response to therapy in severe eosinophilic asthma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1