A Lower Bound Model for Multiple Record Systems Estimation with Heterogeneous Catchability

IF 1.2 4区 数学 International Journal of Biostatistics Pub Date : 2011-05-18 DOI:10.2202/1557-4679.1283
L. Rivest
{"title":"A Lower Bound Model for Multiple Record Systems Estimation with Heterogeneous Catchability","authors":"L. Rivest","doi":"10.2202/1557-4679.1283","DOIUrl":null,"url":null,"abstract":"This work considers the estimation of the size N of a closed population using incomplete lists of its members. Capture histories are constructed by establishing the presence or the absence of each individual in all the lists available. Models for data featuring a heterogeneous catchability and list dependencies are considered. A log-linear model leading to a lower bound for the population size is derived for a known set of list dependencies and a latent catchability variable with an arbitrary distribution. This generalizes Chao’s lower bound to models with interactions. The proposed model can be used to carry out a search for important list interactions. It also provides diagnostic information about the nature of the underlying heterogeneity. Indeed, it is shown that the Poisson maximum likelihood estimator of N under a dichotomous latent class model does not exist for a particular set of LB models. Several distributions for the heterogeneous catchability are considered; they allow to investigate the sensitivity of the population size estimate to the model for the heterogeneous catchability.","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":"41 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2011-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2202/1557-4679.1283","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2202/1557-4679.1283","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This work considers the estimation of the size N of a closed population using incomplete lists of its members. Capture histories are constructed by establishing the presence or the absence of each individual in all the lists available. Models for data featuring a heterogeneous catchability and list dependencies are considered. A log-linear model leading to a lower bound for the population size is derived for a known set of list dependencies and a latent catchability variable with an arbitrary distribution. This generalizes Chao’s lower bound to models with interactions. The proposed model can be used to carry out a search for important list interactions. It also provides diagnostic information about the nature of the underlying heterogeneity. Indeed, it is shown that the Poisson maximum likelihood estimator of N under a dichotomous latent class model does not exist for a particular set of LB models. Several distributions for the heterogeneous catchability are considered; they allow to investigate the sensitivity of the population size estimate to the model for the heterogeneous catchability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有异构可捕获性的多记录系统估计下界模型
这项工作考虑了使用其成员的不完整列表估计封闭种群的大小N。捕获历史是通过确定所有可用列表中每个个体的存在或不存在来构建的。考虑了具有异构可捕获性和列表依赖性的数据模型。对于已知的列表依赖项集和具有任意分布的潜在可捕获性变量,导出了导致总体大小下界的对数线性模型。这将Chao的下界推广到具有相互作用的模型。所提出的模型可用于搜索重要的列表交互。它还提供了关于潜在异质性性质的诊断信息。事实上,对于一组特定的LB模型,在二分类潜在类模型下N的泊松极大似然估计量不存在。考虑了异质捕集力的几种分布;它们允许研究种群大小估计对异质捕获能力模型的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Biostatistics
International Journal of Biostatistics Mathematics-Statistics and Probability
CiteScore
2.30
自引率
8.30%
发文量
28
期刊介绍: The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.
期刊最新文献
Hypothesis testing for detecting outlier evaluators. Optimizing personalized treatments for targeted patient populations across multiple domains. History-restricted marginal structural model and latent class growth analysis of treatment trajectories for a time-dependent outcome. Hybrid classical-Bayesian approach to sample size determination for two-arm superiority clinical trials. An interpretable cluster-based logistic regression model, with application to the characterization of response to therapy in severe eosinophilic asthma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1