Local Phenomena During Riveting Process

Q4 Engineering Fatigue of Aircraft Structures Pub Date : 2014-08-21 DOI:10.2478/fas-2013-0007
J. Kaniowski, Wojciech Wronicz
{"title":"Local Phenomena During Riveting Process","authors":"J. Kaniowski, Wojciech Wronicz","doi":"10.2478/fas-2013-0007","DOIUrl":null,"url":null,"abstract":"Abstract The paper presents experimental and numerical study of the local phenomena during the riveting process. It is commonly accepted that technological factors of the riveting process has a strong influence on the fatigue life of riveted joints. The authors analysed the papers concerned the experimental researches of the riveting force influence on fatigue life. The magnitude of the life increase caused by the riveting force increase suggests the authors that this is not only the result of beneficial stress system but the change of the joint formation mechanism has taken place. This was an inspiration to undertake more detailed researches of the riveting process. The strain progress during the riveting process has been experimentally investigated for four types of aluminium rivets used in airframes. Measurements confirm very high strains near the driven head. For some types of rivets the reversal strain signal has been recorded. Several FE model has been use to investigate the riveting process. The axisymmetric and solid models were used. The agreement of experimental and numerical results in some cases were good, in other cases the numerical models demand further development. In any calculations, the reversal strain effect has not been obtained, This suggest that it is result of the phenomenon which has not been taken into account in numerical modelling. The working hypothesis has been assumed that during the riveting process adhesive joints (called cold welding) were formed and destroyed during the process, what was the reason of the observed reversal strain signal. The authors are going to continue this investigation.","PeriodicalId":37629,"journal":{"name":"Fatigue of Aircraft Structures","volume":"2013 1","pages":"66 - 78"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue of Aircraft Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/fas-2013-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The paper presents experimental and numerical study of the local phenomena during the riveting process. It is commonly accepted that technological factors of the riveting process has a strong influence on the fatigue life of riveted joints. The authors analysed the papers concerned the experimental researches of the riveting force influence on fatigue life. The magnitude of the life increase caused by the riveting force increase suggests the authors that this is not only the result of beneficial stress system but the change of the joint formation mechanism has taken place. This was an inspiration to undertake more detailed researches of the riveting process. The strain progress during the riveting process has been experimentally investigated for four types of aluminium rivets used in airframes. Measurements confirm very high strains near the driven head. For some types of rivets the reversal strain signal has been recorded. Several FE model has been use to investigate the riveting process. The axisymmetric and solid models were used. The agreement of experimental and numerical results in some cases were good, in other cases the numerical models demand further development. In any calculations, the reversal strain effect has not been obtained, This suggest that it is result of the phenomenon which has not been taken into account in numerical modelling. The working hypothesis has been assumed that during the riveting process adhesive joints (called cold welding) were formed and destroyed during the process, what was the reason of the observed reversal strain signal. The authors are going to continue this investigation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铆接过程中的局部现象
摘要本文对铆接过程中的局部现象进行了实验和数值研究。人们普遍认为,铆接过程中的工艺因素对铆接接头的疲劳寿命有很大影响。对有关铆接力对疲劳寿命影响的实验研究文献进行了分析。铆接力增加导致的寿命增加的幅度表明,这不仅是有利应力系统的结果,而且节理形成机制发生了变化。这启发了我对铆接工艺进行更详细的研究。试验研究了四种铝合金铆钉铆接过程中的应变变化规律。测量证实在驱动头附近有很高的应变。对于某些类型的铆钉,已经记录了反转应变信号。采用了几种有限元模型对铆接过程进行了研究。采用轴对称模型和实体模型。在某些情况下,实验结果与数值结果吻合良好,而在其他情况下,数值模型有待进一步发展。在所有的计算中,都没有得到反转应变效应,这表明这是数值模拟中没有考虑到的现象的结果。工作假设假定在铆接过程中,粘接接头(称为冷焊)形成并在此过程中被破坏,这是观察到反转应变信号的原因。作者将继续这项研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fatigue of Aircraft Structures
Fatigue of Aircraft Structures Engineering-Safety, Risk, Reliability and Quality
CiteScore
0.40
自引率
0.00%
发文量
0
期刊介绍: The publication focuses on problems of aeronautical fatigue and structural integrity. The preferred topics include: full-scale fatigue testing of aircraft and aircraft structural components, fatigue of materials and structures, advanced materials and innovative structural concepts, damage tolerant design of aircraft structure, life extension and management of ageing fleets, structural health monitoring and loads, fatigue crack growth and life prediction methods, NDT inspections, airworthiness considerations.
期刊最新文献
Development of Diffraction Research Methodologies for Mediloy S-CO Alloy Speciments Made Using LPBF Additive Manufacturing Insight into Damping Sources in Turbines Checking the Correctness of the Process of Brazing of the Honeycomb Seal to the Base by Ultrasonic Method Prediction of Fatigue Cracks Using Gamma Function Effect of Strain Range and Hold Time on High Temperature Fatigue Life of G17CrMoV5-10 Cast Alloy Steel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1