Shenglin Zhu, S. Yang, Hui Li, Yan Huang, Zhichang Du, Jianyu Fan, Zhong-hua Lin
{"title":"A Triboelectric Nanogenerator Based on a Pendulum-Plate Wave Energy Converter","authors":"Shenglin Zhu, S. Yang, Hui Li, Yan Huang, Zhichang Du, Jianyu Fan, Zhong-hua Lin","doi":"10.2478/pomr-2022-0053","DOIUrl":null,"url":null,"abstract":"Abstract Ocean waves are a promising source of renewable energy, but harvesting this irregular low-frequency energy is challenging due to technological limitations. In this paper, a pendulum plate-based triboelectric nanogenerator (PP-TENG) is proposed. The PP-TENG absorbs wave energy through the pendulum plate installed at the bottom of the device, which generates a swing effect. This drives the motion of the upper TENG power generation unit and generates a charge transfer on the surface of a film of polymer PTFE and nylon, materials which are very sensitive to the low-frequency wave environment. The PP-TENG was tested after building a semi-physical simulation test platform. When the polymer materials were PTFE with a thickness of 0.01 mm and nylon with a thickness of 0.02 mm, 33 commercial LED lamps could be lit simultaneously. Moreover, under short-circuit conditions, the current reached 2.45 μA, and under open-circuit conditions, the voltage reached 212 V. When the PP-TENG was connected in series with a resistor with a resistance of 3 × 105 Ω, its maximum peak power density reached 6.74 mW/m2. It can be concluded that the PP-TENG is characterised by low fabrication costs and excellent energy conversion efficiency. The combination of a pendulum wave energy converter with a TENG shows great output performance. This research lays a solid foundation for practical applications of the proposed structure in the future.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":"29 1","pages":"155 - 161"},"PeriodicalIF":2.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Maritime Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pomr-2022-0053","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Ocean waves are a promising source of renewable energy, but harvesting this irregular low-frequency energy is challenging due to technological limitations. In this paper, a pendulum plate-based triboelectric nanogenerator (PP-TENG) is proposed. The PP-TENG absorbs wave energy through the pendulum plate installed at the bottom of the device, which generates a swing effect. This drives the motion of the upper TENG power generation unit and generates a charge transfer on the surface of a film of polymer PTFE and nylon, materials which are very sensitive to the low-frequency wave environment. The PP-TENG was tested after building a semi-physical simulation test platform. When the polymer materials were PTFE with a thickness of 0.01 mm and nylon with a thickness of 0.02 mm, 33 commercial LED lamps could be lit simultaneously. Moreover, under short-circuit conditions, the current reached 2.45 μA, and under open-circuit conditions, the voltage reached 212 V. When the PP-TENG was connected in series with a resistor with a resistance of 3 × 105 Ω, its maximum peak power density reached 6.74 mW/m2. It can be concluded that the PP-TENG is characterised by low fabrication costs and excellent energy conversion efficiency. The combination of a pendulum wave energy converter with a TENG shows great output performance. This research lays a solid foundation for practical applications of the proposed structure in the future.
期刊介绍:
The scope of the journal covers selected issues related to all phases of product lifecycle and corresponding technologies for offshore floating and fixed structures and their components.
All researchers are invited to submit their original papers for peer review and publications related to methods of the design; production and manufacturing; maintenance and operational processes of such technical items as:
all types of vessels and their equipment,
fixed and floating offshore units and their components,
autonomous underwater vehicle (AUV) and remotely operated vehicle (ROV).
We welcome submissions from these fields in the following technical topics:
ship hydrodynamics: buoyancy and stability; ship resistance and propulsion, etc.,
structural integrity of ship and offshore unit structures: materials; welding; fatigue and fracture, etc.,
marine equipment: ship and offshore unit power plants: overboarding equipment; etc.