{"title":"GREEN SYNTHESIS APPROACH, CHARACTERIZATION, AND APPLICATIONS OF MgO NANO PARTICLES USING CURRY LEAF (MURRAYA KOENIGII)","authors":"K. Leizou, M. Ashraf","doi":"10.26480/asm.01.2022.06.09","DOIUrl":null,"url":null,"abstract":"Nanotechnology has emerged as a state-of-the-art and cutting-edge technology with multifarious applications in a wide array of fields. The goal of this study was to create magnesium oxide nanoparticles using an aqueous extract of curry leaves (murraya koenigii or bergera koenigii). The morphology, elemental content, shape, and size of the produced MgO nanoparticles were determined using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy analysis (EDX). According to the SEM data, the MgO nanoparticle forms were well disseminated, with a spherical shape and particle sizes ranging from 20 to 100 nm. While the EDX pattern infers the sample’s elemental composition, the average occurrence of Mg was 32.45 percent. Plant extracts were used to successfully produce MgO nanoparticlse, which is an essential alternative technique because it is non-toxic, biocompatible, and environmentally benign.","PeriodicalId":53069,"journal":{"name":"Acta Scientifica Malaysia","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Scientifica Malaysia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26480/asm.01.2022.06.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nanotechnology has emerged as a state-of-the-art and cutting-edge technology with multifarious applications in a wide array of fields. The goal of this study was to create magnesium oxide nanoparticles using an aqueous extract of curry leaves (murraya koenigii or bergera koenigii). The morphology, elemental content, shape, and size of the produced MgO nanoparticles were determined using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy analysis (EDX). According to the SEM data, the MgO nanoparticle forms were well disseminated, with a spherical shape and particle sizes ranging from 20 to 100 nm. While the EDX pattern infers the sample’s elemental composition, the average occurrence of Mg was 32.45 percent. Plant extracts were used to successfully produce MgO nanoparticlse, which is an essential alternative technique because it is non-toxic, biocompatible, and environmentally benign.