Yujie Zhu, Seung Ho Choi, Xiulin Fan, Jaeho Shin, Zhaohui Ma, Michael R. Zachariah, Jang Wook Choi, Chunsheng Wang
{"title":"Recent Progress on Spray Pyrolysis for High Performance Electrode Materials in Lithium and Sodium Rechargeable Batteries","authors":"Yujie Zhu, Seung Ho Choi, Xiulin Fan, Jaeho Shin, Zhaohui Ma, Michael R. Zachariah, Jang Wook Choi, Chunsheng Wang","doi":"10.1002/aenm.201601578","DOIUrl":null,"url":null,"abstract":"<p>Advanced electrode materials have been intensively explored for next-generation lithium-ion batteries (LIBs), and great progresses have been achieved for many potential candidates at the lab-scale. To realize the commercialization of these materials, industrially-viable synthetic approaches are urgently needed. Spray pyrolysis (SP), which is highly scalable and compatible with on-line continuous production processes, offers great fidelity in synthesis of electrode materials with complex architectures and chemistries. In this review, motivated by the rapid advancement of the given technology in the battery area, we have summarized the recent progress on SP for preparing a great variety of anode and cathode materials of LIBs with emphasis on their unique structures generated by SP and how the structures enhanced the electrochemical performance of various electrode materials. Considering the emerging popularity of sodium-ion batteries (SIBs), recent electrode materials for SIBs produced by SP will also be discussed. Finally, the powerfulness and limitation along with future research efforts of SP on preparing electrode materials are concisely provided. Given current worldwide interests on LIBs and SIBs, we hope this review will greatly stimulate the collaborative efforts among different communities to optimize existing approaches and to develop innovative processes for preparing electrode materials.</p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"7 7","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2016-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/aenm.201601578","citationCount":"107","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aenm.201601578","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 107
Abstract
Advanced electrode materials have been intensively explored for next-generation lithium-ion batteries (LIBs), and great progresses have been achieved for many potential candidates at the lab-scale. To realize the commercialization of these materials, industrially-viable synthetic approaches are urgently needed. Spray pyrolysis (SP), which is highly scalable and compatible with on-line continuous production processes, offers great fidelity in synthesis of electrode materials with complex architectures and chemistries. In this review, motivated by the rapid advancement of the given technology in the battery area, we have summarized the recent progress on SP for preparing a great variety of anode and cathode materials of LIBs with emphasis on their unique structures generated by SP and how the structures enhanced the electrochemical performance of various electrode materials. Considering the emerging popularity of sodium-ion batteries (SIBs), recent electrode materials for SIBs produced by SP will also be discussed. Finally, the powerfulness and limitation along with future research efforts of SP on preparing electrode materials are concisely provided. Given current worldwide interests on LIBs and SIBs, we hope this review will greatly stimulate the collaborative efforts among different communities to optimize existing approaches and to develop innovative processes for preparing electrode materials.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.