Extracting predictive information from heterogeneous data streams using Gaussian Processes

IF 0.3 Q4 BUSINESS, FINANCE Algorithmic Finance Pub Date : 2016-03-20 DOI:10.3233/AF-160055
Sid Ghoshal, Steve Roberts
{"title":"Extracting predictive information from heterogeneous data streams using Gaussian Processes","authors":"Sid Ghoshal, Steve Roberts","doi":"10.3233/AF-160055","DOIUrl":null,"url":null,"abstract":"Financial markets are notoriously complex environments, presenting vast amounts of noisy, yet potentially informative data. We consider the problem of forecasting financial time series from a wide range of information sources using online Gaussian Processes with Automatic Relevance Determination (ARD) kernels. We measure the performance gain, quantified in terms of Normalised Root Mean Square Error (NRMSE), Median Absolute Deviation (MAD) and Pearson correlation, from fusing each of four separate data domains: time series technicals, sentiment analysis, options market data and broker recommendations. We show evidence that ARD kernels produce meaningful feature rankings that help retain salient inputs and reduce input dimensionality, providing a framework for sifting through financial complexity. We measure the performance gain from fusing each domain's heterogeneous data streams into a single probabilistic model. In particular our findings highlight the critical value of options data in mapping out the curvature of price space and inspire an intuitive, novel direction for research in financial prediction.","PeriodicalId":42207,"journal":{"name":"Algorithmic Finance","volume":"5 1","pages":"21-30"},"PeriodicalIF":0.3000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/AF-160055","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmic Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/AF-160055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 10

Abstract

Financial markets are notoriously complex environments, presenting vast amounts of noisy, yet potentially informative data. We consider the problem of forecasting financial time series from a wide range of information sources using online Gaussian Processes with Automatic Relevance Determination (ARD) kernels. We measure the performance gain, quantified in terms of Normalised Root Mean Square Error (NRMSE), Median Absolute Deviation (MAD) and Pearson correlation, from fusing each of four separate data domains: time series technicals, sentiment analysis, options market data and broker recommendations. We show evidence that ARD kernels produce meaningful feature rankings that help retain salient inputs and reduce input dimensionality, providing a framework for sifting through financial complexity. We measure the performance gain from fusing each domain's heterogeneous data streams into a single probabilistic model. In particular our findings highlight the critical value of options data in mapping out the curvature of price space and inspire an intuitive, novel direction for research in financial prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用高斯过程从异构数据流中提取预测信息
金融市场是出了名的复杂环境,提供了大量嘈杂但可能提供信息的数据。我们考虑使用具有自动关联确定(ARD)核的在线高斯过程从广泛的信息源预测金融时间序列的问题。我们通过融合四个独立的数据领域(时间序列技术、情绪分析、期权市场数据和经纪商推荐),以标准化均方根误差(NRMSE)、中位数绝对偏差(MAD)和Pearson相关性来衡量业绩收益。我们展示的证据表明,ARD核产生了有意义的特征排名,有助于保留显著输入并降低输入维度,为筛选金融复杂性提供了一个框架。我们通过将每个域的异构数据流融合到单个概率模型中来测量性能增益。特别是,我们的研究结果突出了期权数据在绘制价格空间曲率方面的关键价值,并为金融预测的研究提供了一个直观的、新颖的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Algorithmic Finance
Algorithmic Finance BUSINESS, FINANCE-
CiteScore
0.40
自引率
0.00%
发文量
6
期刊介绍: Algorithmic Finance is both a nascent field of study and a new high-quality academic research journal that seeks to bridge computer science and finance. It covers such applications as: High frequency and algorithmic trading Statistical arbitrage strategies Momentum and other algorithmic portfolio management Machine learning and computational financial intelligence Agent-based finance Complexity and market efficiency Algorithmic analysis of derivatives valuation Behavioral finance and investor heuristics and algorithms Applications of quantum computation to finance News analytics and automated textual analysis.
期刊最新文献
Combining low-volatility and mean-reversion anomalies: Better together? Guidelines for building a realistic algorithmic trading market simulator for backtesting while incorporating market impact Graph embedded dynamic mode decomposition for stock price prediction Interest rate derivatives for the fractional Cox-Ingersoll-Ross model How smart is a momentum strategy? An empirical study of Indian equities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1