{"title":"Microstructure-Based Order Placement in a Continuous Double Auction Agent Based Model","authors":"Alexandru Mandes","doi":"10.3233/AF-150049","DOIUrl":null,"url":null,"abstract":"This contribution proposes a novel order placement strategy which can be used for simulating continuous double auction financial markets, within an agent-based model framework. The order placement decision is given by an optimization problem which minimizes the risk adjusted execution cost, taking into consideration relevant market microstructure factors and intrinsic agent characteristics. This order submission process is more realistic than has been done previously and contributes to a higher fidelity of the intraday market dynamics. The results show that, as opposed to random submission strategies, high-frequency stylized facts such as the concave shape of the market price impact function and the power-law decaying relative price distribution of off-spread limit orders are replicated. Therefore, the resulting model can be used as a realistic test environment for high-frequency trading strategies, in the context of the current, heated debate over the impact of high-frequency trading. Not only the impact of individual trading strategies can be analyzed, but also the interdependencies and the global emergent behavior of multiple coexistent strategies. Moreover, innovative regulatory policies, which have not been tested yet under real market conditions, could be inspected.Enhanced content available, see PDF for details.","PeriodicalId":42207,"journal":{"name":"Algorithmic Finance","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2016-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/AF-150049","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmic Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/AF-150049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 8
Abstract
This contribution proposes a novel order placement strategy which can be used for simulating continuous double auction financial markets, within an agent-based model framework. The order placement decision is given by an optimization problem which minimizes the risk adjusted execution cost, taking into consideration relevant market microstructure factors and intrinsic agent characteristics. This order submission process is more realistic than has been done previously and contributes to a higher fidelity of the intraday market dynamics. The results show that, as opposed to random submission strategies, high-frequency stylized facts such as the concave shape of the market price impact function and the power-law decaying relative price distribution of off-spread limit orders are replicated. Therefore, the resulting model can be used as a realistic test environment for high-frequency trading strategies, in the context of the current, heated debate over the impact of high-frequency trading. Not only the impact of individual trading strategies can be analyzed, but also the interdependencies and the global emergent behavior of multiple coexistent strategies. Moreover, innovative regulatory policies, which have not been tested yet under real market conditions, could be inspected.Enhanced content available, see PDF for details.
期刊介绍:
Algorithmic Finance is both a nascent field of study and a new high-quality academic research journal that seeks to bridge computer science and finance. It covers such applications as: High frequency and algorithmic trading Statistical arbitrage strategies Momentum and other algorithmic portfolio management Machine learning and computational financial intelligence Agent-based finance Complexity and market efficiency Algorithmic analysis of derivatives valuation Behavioral finance and investor heuristics and algorithms Applications of quantum computation to finance News analytics and automated textual analysis.