Establishment of rice yield prediction model using soil compaction

IF 1.6 Q2 AGRICULTURE, MULTIDISCIPLINARY Asian Journal of Agriculture and Biology Pub Date : 2023-01-01 DOI:10.35495/ajab.2021.09.327
{"title":"Establishment of rice yield prediction model using soil compaction","authors":"","doi":"10.35495/ajab.2021.09.327","DOIUrl":null,"url":null,"abstract":"Soil compaction has a real effect on rice yield in the Mekong Delta. Two field experiments were carried out during 2019 Summer-Autumn and 2020 Summer-Autumn in An Giang Province (Mekong Delta). OM18 rice was cultivated in the plots which were laid out in a randomized complete block design measuring 0.5 × 0.5 m with 5 and 6 m alley between blocks and between plots. The Pearson's correlation test was applied to compare the mean and standard deviation of the soil layers and evaluate the correlation between soil compaction and rice yield in both crops. The present research results showed that the value of soil compaction increased with depth and differed among locations in the rice field. Soil compaction at 10 cm from the surface had a positive correlation with rice yield. Therefore, the prediction model of rice yield is able to build up due to soil compaction at 10 cm from the surface. Moreover, this study provides that the value of 10 cm soil layer compaction ranging between 165 and 190 kPa can be the optimal value of soil tillage for paddy rice cultivation with the highest yield in the Summer-Autumn crop.","PeriodicalId":8506,"journal":{"name":"Asian Journal of Agriculture and Biology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Agriculture and Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35495/ajab.2021.09.327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Soil compaction has a real effect on rice yield in the Mekong Delta. Two field experiments were carried out during 2019 Summer-Autumn and 2020 Summer-Autumn in An Giang Province (Mekong Delta). OM18 rice was cultivated in the plots which were laid out in a randomized complete block design measuring 0.5 × 0.5 m with 5 and 6 m alley between blocks and between plots. The Pearson's correlation test was applied to compare the mean and standard deviation of the soil layers and evaluate the correlation between soil compaction and rice yield in both crops. The present research results showed that the value of soil compaction increased with depth and differed among locations in the rice field. Soil compaction at 10 cm from the surface had a positive correlation with rice yield. Therefore, the prediction model of rice yield is able to build up due to soil compaction at 10 cm from the surface. Moreover, this study provides that the value of 10 cm soil layer compaction ranging between 165 and 190 kPa can be the optimal value of soil tillage for paddy rice cultivation with the highest yield in the Summer-Autumn crop.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用土壤压实建立水稻产量预测模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Asian Journal of Agriculture and Biology
Asian Journal of Agriculture and Biology AGRICULTURE, MULTIDISCIPLINARY-
CiteScore
2.80
自引率
4.50%
发文量
27
审稿时长
6 weeks
期刊介绍: Asian Journal of Agriculture and Biology (AJAB) is a peer reviewed, open access, quarterly journal serving as a means for scientific information exchange in international and national fora. The scope encompasses all disciplines of agriculture and biology including animal, plant and environmental sciences. All manuscripts are evaluated for their scientific content and significance by the Editor-in-Chief &/or Managing Editor and at least two independent reviewers. All submitted manuscripts should contain unpublished original research which should not be under consideration for publication elsewhere. In order to avoid unnecessary delay in publication, authors are requested to comply the following guidelines; differing these, your submission will be returned for additional revision.
期刊最新文献
Effect of salinity stress on physiological aspects of pumpkin (Cucurbita moschata Duchesne. ‘Laikaotok’) under hydroponic condition Effects of hormone and cold treatments on dormancy breaking of Jerusalem artichoke (Helianthus tuberosus L.) tubers Performance of broiler birds on feeding natural anti stressors in summer during heat stress Establishment of rice yield prediction model using soil compaction Silicon improves strawberry plants nutrient uptake and epicuticular wax formation in a rhizosphere cooling system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1